Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51057
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉懷勝(Hwai-Shen Liu)
dc.contributor.authorYing-Ru Fangen
dc.contributor.author方盈茹zh_TW
dc.date.accessioned2021-06-15T13:24:30Z-
dc.date.available2018-07-26
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-06-16
dc.identifier.citationAhmia, A., Danane, F., Bessah, R., and Boumesbah, I. (2014). Raw material for biodiesel production.Valorization of used edible oil. Revue des Energies Renouvelables, 17, 335-343.
Ali, Y., and Hanna, M. (1994). Alternative Diesel Fuels from Vegetable Oils. Bioresource Technology, 50, 153-163.
Amin, T., Amin, N., and Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683-710.
Aniya, V., Muktham, R., Alka, K., and Satyavathi, B. (2015). Modeling and simulation of batch kinetics of non-edible karanja oil for biodiesel production: A mass transfer study. Fuel, 161, 137-145.
Aranda, D., Santos, R., Tapanes, N., Ramos, A., and Antunes, O. (2008). Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids. Catalysis Letters, 122(1-2), 20-25.
Axelsson, M., and Gentili, F. (2014). A Single-Step Method for Rapid Extraction of Total Lipids from Green Microalgae. Plos One, 9(2), 1-6.
Bajpai, D., and Tyagi, V. (2006). Biodiesel: Source, Production, Composition, Properties and Its Benefits. Journal of Oleo Science, 55(10), 487-502.
Balat, M. (2011). Potential alternatives to edible oils for biodiesel production – A review of current work. Energy Conversion and Management, 52(2), 1479-1492.
Balat, M., and Balat, H. (2010). Progress in biodiesel processing. Applied Energy, 87(6), 1815-1835.
Bambase, M., Nakamura, N., Tanaka, J., and Matsumura, M. (2007). Kinetics of hydroxide-catalyzed methanolysis of crude sunflower oil for the production of fuel-grade methyl esters. Journal of Chemical Technology and Biotechnology, 82(3), 273-280.
Banković-Ilić, I., Stojković, I., Stamenković, O., Veljkovic, V., and Hung, Y. (2014). Waste animal fats as feedstocks for biodiesel production. Renewable and Sustainable Energy Reviews, 32, 238-254.
Basha, S., Gopal, K., and Jebaraj, S. (2009). A review on biodiesel production, combustion, emissions and performance. Renewable and Sustainable Energy Reviews, 13(6-7), 1628-1634.
Berrios, M., Siles, J., Martin, M., and Martin, A. (2007). A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil. Fuel, 86(15), 2383-2388.
Buchanan, A., and Honey, B. (1994). Energy and carbon dioxide implications of building construction. Energy and Buildings, 20, 205-217.
Campbell, P., Beer, T., and Batten, D. (2011). Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol, 102(1), 50-56.
Canakci, M., and Gerpen, J. (1999). Biodiesel Production via Acid Catalysis. American Society of Agricultural Engineers, 42, 1203-1210.
Chen, L., Liu, T., Zhang, W., Chen, X., and Wang, J. (2012). Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour Technol, 111, 208-214.
Cherubini, F. (2010). The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412-1421.
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306. doi:10.1016/j.biotechadv.2007.02.001
Demirbas, A. (2011). Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems. Applied Energy, 88(10), 3541-3547.
Demirbas, A., and Demirbas, M. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 52(1), 163-170.
Dias, J., Maria, C., and Almeida, M. (2008). Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel, 87(17-18), 3572-3578.
Dickey, L., Teter, B., Sampugna, J., and Woods, L. (2002). Comparison of a Direct Transesterification Method and the Bligh and Dyer Method to Determine Fatty Acid Content in Striped Bass Tissues and Diet. North American Journal of Aquaculture, 64, 158-163.
Dong, T., Wang, J., Miao, C., Zheng, Y., and Chen, S. (2013). Two-step in situ biodiesel production from microalgae with high free fatty acid content. Bioresour Technol, 136, 8-15.
Ehimen, E., Sun, Z., and Carrington, C. (2010). Variables affecting the in situ transesterification of microalgae lipids. Fuel, 89(3), 677-684.
Encinar, J., Gonza´ lez, J., Rodrı´guez, J., and Tejedor, A. (2002). Biodiesel Fuels from Vegetable Oils: Transesterification of Cynara cardunculus L. Oils with Ethanol. Energy and Fuels, 16, 443-450.
Eze, V., Harvey, A., and Phan, A. (2015). Determination of the kinetics of biodiesel saponification in alcoholic hydroxide solutions. Fuel, 140, 724-730.
Eze, V., Phan, A., and Harvey, A. (2014). A more robust model of the biodiesel reaction, allowing identification of process conditions for significantly enhanced rate and water tolerance. Bioresour Technol, 156, 222-231.
Farag, H., Azza, E., and Taha, N. (2013). Kinetic study of used vegetable oil for esterification and transesterification process of biodiesel production. International Journal of Chemical and Biochemical Sciences, 3, 1-8.
Formo, M. (1954). Ester Reactions of Fatty Materials. The Journal of The American Oil Chemsts' Society, 31, 548-559.
Freedman, B., Butterfield, R., and Pryde, E. (1986). Transesterification Kinetics of Soybean Oil. Journal of the American Oil Chemists' Society, 63, 1375-1380.
Freedman, B., Pryde, E., and Mounts, T. (1984). Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable Oils. Journal of the American Oil Chemists' Society, 61, 1638-1643.
Greenwell, H., Laurens, L., Shields, R., Lovitt, R., and Flynn, K. (2009). Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface, 7(46), 703-726.
Griffiths, M., Hille, R., and Harrison, S. (2010). Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. Lipids, 45(11), 1053-1060.
Haas, M., and Wagner, K. (2011). Simplifying biodiesel production: The direct or in situ transesterification of algal biomass. European Journal of Lipid Science and Technology, 113(10), 1219-1229.
Halim, R., Danquah, M., and Webley, P. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biotechnol Adv, 30(3), 709-732.
Halim, R., Gladman, B., Danquah, M., and Webley, P. (2011). Oil extraction from microalgae for biodiesel production. Bioresour Technol, 102(1), 178-185.
Halim, R., Rupasinghe, T., Tull, D., and Webley, P. (2014). Modelling the kinetics of lipid extraction from wet microalgal concentrate: A novel perspective on a classical process. Chemical Engineering Journal, 242, 234-253.
Hamilton, C., and Turton, H. (2002). Determinants of emissions growth in OECD countries. Energy Policy, 30, 63-71.
Harrlngton, K., and D’Arcy-Evans, C. (1985). Transesterification in Situ of Sunflower Seed Oil. Ind. Eng. Chem. Prod. Res. Dev., 24, 314-318.
Harrlngton, K., and D’Arcy-Evans, C. (1985). Comparison of Conventional and in situ Methods of Transesterification of Seed Oil from a Series of Sunflower Cultivars. Journal of the American Oil Chemists' Society, 62, 1009-1013.
Hayyan, A., Alam, M., Mirghani, M., Kabbashi, N., Hakimi, N., Siran, Y., and Tahiruddin, S. (2010). Sludge palm oil as a renewable raw material for biodiesel production by two-step processes. Bioresour Technol, 101(20), 7804-7811.
Hayyan, A., Mjalli, F., Hashim, M., Hayyan, M., AlNashef, I., Al-Zahrani, S., and Al-Saadi, M. (2011). Ethanesulfonic acid-based esterification of industrial acidic crude palm oil for biodiesel production. Bioresour Technol, 102(20), 9564-9570.
Hidalgo, P., Ciudad, G., Mittelbach, M., and Navia, R. (2015). Biodiesel production by direct conversion of Botryococcus braunii lipids: Reaction kinetics modelling and optimization. Fuel, 153, 544-551.
Hidalgo, P., Ciudad, G., Schober, S., Mittelbach, M., and Navia, R. (2015). Improving the FAME Yield ofin SituTransesterification from Microalgal Biomass through Particle Size Reduction and Cosolvent Incorporation. Energy and Fuels, 823-832.
Hidalgo, P., Toro, C., Ciudad, G., Schober, S., Mittelbach, M., and Navia, R. (2014). Evaluation of Different Operational Strategies for Biodiesel Production by Direct Transesterification of Microalgal Biomass. Energy and Fuels, 28(6), 3814-3820.
Hincapié, G., Mondragón, F., and López, D. (2011). Conventional and in situ transesterification of castor seed oil for biodiesel production. Fuel, 90(4), 1618-1623.
Hoque, M., Singh, A., and Chuan, Y. (2011). Biodiesel from low cost feedstocks: The effects of process parameters on the biodiesel yield. Biomass and Bioenergy, 35(4), 1582-1587.
Huang, G., Chen, F., Wei, D., Zhang, X., and Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38-46.
IPCC. (2007). Climate Change 2007 Synthesis Report : A Report of the Intergovernmental Panel on Climate Change.
IPCC. (2013). Climate Change 2013 : The Physical Science Basis : Summary for Policymakers.
IRENA. (2014). Global Bioenergy Supply and Demand Projections_ A working paper for REmap 2030. International Renewable Energy Agency.
Jain, S., and Sharma, M. (2010). Prospects of biodiesel from Jatropha in India: A review. Renewable and Sustainable Energy Reviews, 14(2), 763-771.
Khan, S., Rashmi, Hussain, M., Prasad, S., and Banerjee, U. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13(9), 2361-2372.
Kim, M., Yan, S., Salley, S., and Ng, K. (2010). Competitive transesterification of soybean oil with mixed methanol/ethanol over heterogeneous catalysts. Bioresour Technol, 101(12), 4409–4414.
Komers, K., Skopal, F., Stloukal, R., and Machek, J. (2002). Kinetics and mechanism of the KOH — catalyzed methanolysis of rapeseed oil for biodiesel production. European Journal of Lipid Science and Technology, 104(11), 728-737.
Kumar, A., and Sharma, S. (2011). Potential non-edible oil resources as biodiesel feedstock: An Indian perspective. Renewable and Sustainable Energy Reviews, 15(4), 1791-1800.
Kumar, V., Muthuraj, M., Palabhanvi, B., Ghoshal, A., and Das, D. (2014). Evaluation and optimization of two stage sequential in situ transesterification process for fatty acid methyl ester quantification from microalgae. Renewable Energy, 68, 560-569.
Lepage, G., and Roy, C. (1986). Direct transesterification of all classes of lipids in a one-step reaction. Journal of Lipid Research, 27, 114-120.
Leung, D., Wu, X., and Leung, M. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083-1095.
Li, M. (2007). Peak oil, the rise of China and India, and the global energy crisis. Journal of Contemporary Asia, 37(4), 449-471. Li, X., Xu, H., and Wu, Q. (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng, 98(4), 764-771.
Likozar, B., and Levec, J. (2014). Effect of process conditions on equilibrium, reaction kinetics and mass transfer for triglyceride transesterification to biodiesel: Experimental and modeling based on fatty acid composition. Fuel Processing Technology, 122, 30-41.
Liu, K. (1994). Preparation of Fatty Acid Methyl Esters for Gas-Chromatographic Analysis of Lipids in Biological Materials. Journal of the American Oil Chemists' Society, 71, 1179-1187.
Lotero, E., Liu, Y., Lopez, D., Suwannakarn, K., Bruce, D., and Goodwin, J. (2005). Synthesis of Biodiesel via Acid Catalysis. Ind. Eng. Chem. Res, 44, 5353-5363.
Ma, F., and Hanna, M. (1999). Biodiesel production: a review. Bioresource Technology, 70, 1-15.
Maher, K., and Bressler, D. (2007). Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresour Technol, 98(12), 2351-2368.
Marchetti, J., Miguel, V., and Errazu, A. (2007). Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews, 11(6), 1300-1311.
Mata, T., Martins, A., and Caetano, N. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232.
Meher, L., Vidyasagar, D., and Naik, S. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10(3), 248-268.
Miao, X., and Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresour Technol, 97(6), 841-846.
Naik, M., Meher, L., S, N., and L, D. (2008). Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil. Biomass and Bioenergy, 32(4), 354-357.
Naik, S., Goud, V., Rout, P., and Dalai, A. (2010). Production of first and second generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578-597.
Nye, M., Williamson, T., Deshpande, S., Schrader, J., and Snively, W. (1983). Conversion of Used Frying Oil to Diesel Fuel
by Transesterification: Preliminary Tests. Journal of the American Oil Chemists' Society, 60, 1598-1601.
Pal, D., Inna, K., Cohen, Z., and Boussiba, S. (2011). The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol, 90(4), 1429-1441.
Park, J., Park, M., Lee, Y., and Yang, J. (2015). Advances in direct transesterification of algal oils from wet biomass. Bioresour Technol, 184, 267-275.
Pisarello, M., Dalla, C., Mendow, G., and Querini, C. (2010). Esterification with ethanol to produce biodiesel from high acidity raw materials. Fuel Processing Technology, 91(9), 1005-1014.
Rani, K., Kumar, T., Neeharika, T., Satyavathi, B., and Prasad, R. (2013). Kinetic studies on the esterification of free fatty acids in jatropha oil. European Journal of Lipid Science and Technology, 115(6), 691-697.
Ratha, S., Prasanna, R., Prasad, R., Sarika, C., Dhar, D., and Saxena, A. (2013). Modulating lipid accumulation and composition in microalgae by biphasic nitrogen supplementation. Aquaculture, 392-395, 69-76.
Reyero, I., Arzamendi, G., Zabala, S., and Gandía, L. (2015). Kinetics of the NaOH-catalyzed transesterification of sunflower oil with ethanol to produce biodiesel. Fuel Processing Technology, 129, 147-155.
Schenk, P., Skye, R., Stephens, E., Marx, U., Mussgnug, J., Posten, C., Hankamer, B. (2008). Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy Research, 1(1), 20-43.
Scott, S., Davey, M., Dennis, J., Horst, I., Howe, C., Lea-Smith, D., and Smith, A. (2010). Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol, 21(3), 277-286.
Sharma, Y., Singh, B., and Upadhyay, S. (2008). Advancements in development and characterization of biodiesel: A review. Fuel, 87(12), 2355-2373.
Shiu, P., Gunawan, S., Hsieh, W., Kasim, N., and Ju, Y. (2010). Biodiesel production from rice bran by a two-step in-situ process. Bioresour Technol, 101(3), 984-989.
Singh, J., and Gu, S. (2010). Commercialization potential of microalgae for biofuels production. Renewable and Sustainable Energy Reviews, 14(9), 2596-2610.
Singh, S., and Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14(1), 200-216.
Srivastava, A., and Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, 4, 111-133.
Stein, J. (1973), Culture methods and growth measurements. Handbook of Phycological methods, Cambridge University Press, pp. 448.
Sun, X., Cao, Y., Xu, H., Liu, Y., Sun, J., Qiao, D., and Cao, Y. (2014). Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol, 155, 204-212.
Suwannakarn, K., Lotero, E., Ngaosuwan, K., and Goodwin, J. (2009). Simultaneous Free Fatty Acid Esterification and Triglyceride Transesterification Using a Solid Acid Catalyst with in Situ Removal of Water and Unreacted Methanol. Ind. Eng. Chem. Res., 48, 2810–2818.
Takisawa, K., Kanemoto, K., Miyazaki, T., and Kitamura, Y. (2013). Hydrolysis for direct esterification of lipids from wet microalgae. Bioresour Technol, 144, 38-43.
Vasudevan, P., and Briggs, M. (2008). Biodiesel production--current state of the art and challenges. J Ind Microbiol Biotechnol, 35(5), 421-430.
Vauchel, P., Leroux, K., Kaas, R., Arhaliass, A., Baron, R., and Legrand, J. (2009). Kinetics modeling of alginate alkaline extraction from Laminaria digitata. Bioresource Technology, 100(3), 1291-1296.
Vicente, G., M, M. n., Aracil, J., and A, E. (2005). Kinetics of Sunflower Oil Methanolysis. Ind. Eng. Chem. Res., 44, 5447-5454.
Vicente, G., Martinez, M., and Aracil, J. (2004). Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol, 92(3), 297-305.
Wahlen, B., Willis, R., and Seefeldt, L. (2011). Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol, 102(3), 2724-2730.
Wright, H., Segur, J., Clark, H., and Coburn, S. (1944). A Report on Ester Interchange. Oil and Soap, 145-148.
Zhang, Y. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89(1), 1-16.
古鎬鋼。(2012)。改良直接轉酯化反應轉化微藻為生質柴油。化學工程學系。國立台灣大學。
葉芸。(2014)。以直接轉酯化反應轉化濕藻製備生質柴油及其動力學。化學工程學系。國立台灣大學。
蔡明達。(2009)。微藻養殖生產油脂並利用微藻油脂產製生質柴油之研究。生物科技學系。國立交通大學。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51057-
dc.description.abstract微藻由於能夠快速生長且不與農耕作物競爭,並能有效率消耗二氧化碳,因此近幾年逐漸成為一受矚目的生質柴油原料,然而如何有效率地將微藻轉化為生質柴油仍有許多困難。本論文提出一新穎的轉化濕藻油脂程序,並建立動力學模型描述反應情形,再以初步放大反應驗證所提出的動力學模型。
本研究使用小球藻(Chlorella sp. ESP -6)為原料,結合傳統油脂萃取與油脂轉化反應,將油脂萃取、反應及純化合併為兩步驟反應。第一步驟加入氫氧化鈉甲醇溶液,使微藻細胞破碎釋放油脂,進行轉酯化及皂化反應,第二步驟加入鹽酸甲醇溶液,將皂化產物中和為游離脂肪酸,再酯化為脂肪酸甲酯(生質柴油)。
實驗結果顯示,以直接皂化-酯化轉化濕藻油脂具有許多優點;除了能夠節省傳統萃取必須去除水分以及油脂萃取的能量成本,與鹼催化轉酯化製程相比,能夠克服含水量及游離脂肪酸的限制,另一方面,只需要酸催化轉酯化製程完成反應約五分之一的時間。當含有0.05g乾重的濕藻0.5ml,加入2M的氫氧化鈉甲醇溶液1ml後反應20分鐘,再接著加入1M的鹽酸甲醇溶液2ml並反應15分鐘,兩步驟反應的水浴溫度皆為100℃,所達到的生質柴油產率為0.18 g-biodiesel/g-dried cell。
在本研究中,同時以假設的反應機制所建立的動力學模型,對於實驗結果進行模擬具有不錯的描述結果;由初步放大反應的實驗,更進一步地驗證了所提出的動力學模型。
zh_TW
dc.description.abstractMicroalgae has become a potential resource of biodiesel in recent years for its fast growth, non-food source, and CO2 capture ability. However, efficient and economic production of biodiesel from microalgae is still a challenge. In this study, we presented a novel strategy of direct saponification-esterification conversion (DSEC) from wet microalgae (Chlorella vulgaris) to biodiesel.
The process was accomplished with two consecutive additions into wet algae. With the first addition of NaOH/methanol solution, lipids of triglycerides and free fatty acids were released from disrupted algae and primarily converted into soaps by means of saponification. Then with further HCl/methanol addition, soaps were acidified into free fatty acid and esterified into fatty acid methyl ester (biodiesel).
The experimental results supported several advantages of DSEC process. First, DSEC eliminates lipid extraction/purification step in conventail process, which usually accounts for more than half of production cost. Secondly, compared with the alkali catalyzed transesterification process, DSEC completely alleviated the restriction of incapable of dealing with the case of high content of water and free fatty acid. While compared with acid catalyzed transesterification process, the production time of DSEC was only about one-fifth. For example, at 100oC water bath, with 0.5 ml wet microalgae containing 0.05 g-dried-cell, yielded 0.18 g-biodiesel/g-dried-cell when 1 ml of 2 M NaOH/methanol was added for 20 mins and 2 ml of 1 M HCl/methanol was consequently added for another 15 mins. Moreover, the proposed kinetic model indicated a good fit, and the results in preliminary scale-up reactions further verified the kinetic model.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:24:30Z (GMT). No. of bitstreams: 1
ntu-105-R03524072-1.pdf: 11869135 bytes, checksum: 62289f3d25c475c17bffe744d1a1fed4 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 IX
第一章 緒論 1
第二章 文獻回顧 2
2-1 全球暖化與能源利用 2
2-2 生質柴油 4
2-3 生質柴油原料 7
2-3-1 微藻作為生質柴油原料 9
2-4 生質柴油製程 12
2-5 反應機制與動力學模型 23
第三章 實驗設備與方法 37
3-1 實驗藻種與培養 37
3-1.1 培養裝置 38
3-1.2 培養基 40
3-2 直接皂化-酯化轉化反應 42
3-3 分析方法 44
3-3.1 微藻乾重及藻液密度 44
3-3.2直接皂化-酯化轉化反應各成分之分析 44
3-4 實驗藥品與儀器 56
3-4-1 實驗藥品 56
3-4-2 實驗儀器 57
第四章 實驗結果與討論 58
4-1 直接皂化-酯化轉化反應機制說明 58
4-2 直接皂化-酯化轉化反應動力學模型 65
4-2.1 第一步驟釋放油脂萃取模型 70
4-2.2 第一步驟動力學模型 76
4-2.3 第二步驟動力學模型 89
4-3 第一步驟初步規模放大 94
4-3.1第一步驟濕藻濃度規模放大與動力學模型的預測 94
4-3.2 最大量釋放油脂線性關係式之建立 103
4-3.3第一步驟反應各成分之間用量關係 108
4-3.4第一步驟反應總體積規模放大 117
4-3.5 討論 124
4-4 第二步驟初步規模放大 132
4-4.1 第二步驟濕藻濃度規模放大與動力學模型的預測 132
4-4.2 接近完全反應脂肪酸甲酯線性關係式 137
4-4.3 第二步驟各成分用量關係 141
4-4.4 第二步驟反應總體積規模放大 152
4-4.5 討論 157
4-5 直接皂化-酯化轉化油脂生產生質柴油製程之評估 163
第五章 結論 169
參考文獻 172
附錄 183
dc.language.isozh-TW
dc.title以「直接皂化-酯化程序」轉化含油脂濕藻製備生質柴油zh_TW
dc.titleBiodiesel Production from Wet Microalgae by Direct Saponification-Esterification Conversionen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴進此(Jinn-Tsyy Lai),江佳穎(Chia-Ying Chiang),鄭玉佳(Yu-Chia Cheng)
dc.subject.keyword生質柴油,微藻,直接轉化,皂化,酯化,動力學,zh_TW
dc.subject.keywordBiodiesel,Microalgae,Direct conversion,Saponification,Esterification,en
dc.relation.page187
dc.identifier.doi10.6342/NTU201600363
dc.rights.note有償授權
dc.date.accepted2016-06-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
11.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved