Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51042Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林啟萬(Chii-Wann Lin) | |
| dc.contributor.author | Hsu-Tao Shen | en |
| dc.contributor.author | 沈續濤 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:24:16Z | - |
| dc.date.available | 2018-07-06 | |
| dc.date.copyright | 2016-07-06 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-06-19 | |
| dc.identifier.citation | [1] Eggins, B. R. (2013). Biosensors: an introduction: Springer-Verlag.
[2] Lee, H.-J., & Yook, J.-G. (2014). Recent research trends of radio-frequency biosensors for biomolecular detection. Biosensors and Bioelectronics, 61, 448-459. [3] Caruso, F., Rodda, E., Furlong, D. N., Niikura, K., & Okahata, Y. (1997). Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Analytical Chemistry, 69(11), 2043-2049. [4] Moulin, A., O'shea, S., & Welland, M. (2000). Microcantilever-based biosensors. Ultramicroscopy, 82(1), 23-31. [5] Lee, K., Babajanyan, A., Kim, C., Kim, S., & Friedman, B. (2008). Glucose aqueous solution sensing by a near-field microwave microprobe. Sensors and Actuators A: Physical, 148(1), 28-32. [6] Lee, H.-J., & Yook, J.-G. (2008). Biosensing using split-ring resonators at microwave regime. Applied Physics Letters, 92(25), 4103. [7] Sun, N., Liu, Y., Lee, H., Weissleder, R., & Ham, D. (2009). CMOS RF biosensor utilizing nuclear magnetic resonance. Solid-State Circuits, IEEE Journal of, 44(5), 1629-1643. [8] Sekar, V., Torke, W. J., Palermo, S., & Entesari, K. (2012). A self-sustained microwave system for dielectric-constant measurement of lossy organic liquids. Microwave Theory and Techniques, IEEE Transactions on, 60(5), 1444-1455. [9] Elhadidy, O., Shakib, S., Krenek, K., Palermo, S., & Entesari, K. (2015). A wide-band fully-integrated CMOS ring-oscillator PLL-based complex dielectric spectroscopy system. Circuits and Systems I: Regular Papers, IEEE Transactions on, 62(8), 1940-1949. [10] Khoshnoud, F., & De Silva, C. W. (2012). Recent advances in MEMS sensor technology–biomedical applications. Instrumentation & Measurement Magazine, IEEE, 15(1), 8-14. [11] Damez, J.-L., & Clerjon, S. (2008). Meat quality assessment using biophysical methods related to meat structure. Meat Science, 80(1), 132-149. [12] Jackson, J. D. (1962). Classical electrodynamics (Vol. 3): Wiley New York etc. [13] Pozar, D. M. (2009). Microwave engineering: John Wiley & Sons. [14] Khan, M. T., & Ali, S. M. (2012). A brief review of measuring techniques for characterization of dielectric materials. International Journal of Information Technology and Electrical Engineering, 1(1). [15] Mamishev, A. V., Sundara-Rajan, K., Yang, F., Du, Y., & Zahn, M. (2004). Interdigital sensors and transducers. Proceedings of the IEEE, 92(5), 808-845. [16] Chen, Z., & Luo, R. C. (1998). Design and implementation of capacitive proximity sensor using microelectromechanical systems technology. Industrial Electronics, IEEE Transactions on, 45(6), 886-894. [17] Chen, P. S. (2014). Integrated Interface Circuits for Dielectric-Constant Measurement in Non-Invasive Material Sensing Systems. NTUST Master Thesis. [18] Andreani, P., Bonfanti, A., Romano, L., & Samori, C. (2002). Analysis and design of a 1.8-GHz CMOS LC quadrature VCO. Solid-State Circuits, IEEE Journal of, 37(12), 1737-1747. [19] Zoric, N., Iavorschi, A., Sireteanu, M., Viziteu, G., & Ciobanu, R. (2013). Design and simulations of IDC sensor using Comsol multyphysics and dielectric spectroscopy of LTCC materials. Buletinul AGIR(3), 63-69. [20] Chang, F. C. (2012). Design and Application of Non-Contact Biosensing Patch Antenna. NTU Master Thesis. [21] Ham, D., & Hajimiri, A. (2001). Concepts and methods in optimization of integrated LC VCOs. Solid-State Circuits, IEEE Journal of, 36(6), 896-909. [22] Rogers, J. W., Plett, C., & Dai, F. (2006). Integrated circuit design for high-speed frequency synthesis: Artech House Boston, London. [23] Huang, Q., & Rogenmoser, R. (1996). Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks. Solid-State Circuits, IEEE Journal of, 31(3), 456-465. [24] Kang, S.-M., & Leblebici, Y. (2003). CMOS digital integrated circuits: Tata McGraw-Hill Education. [25] Scaife, B. (1989). Principles of dielectrics. monographs on the physics and chemistry of materials. [26] Wiwatcharagoses, N., Park, K. Y., Hejase, J. A., Williamson, L., & Chahal, P. (2011). Microwave artificially structured periodic media microfluidic sensor. Paper presented at the Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st. [27] Helmy, A. A., & Entesari, K. (2012). A 1–8-GHz miniaturized spectroscopy system for permittivity detection and mixture characterization of organic chemicals. Microwave Theory and Techniques, IEEE Transactions on, 60(12), 4157-4170. [28] McKee, J. M., & Johnson, B. P. (2000). Real-time chemical sensing of aqueous ethanol glucose mixtures. Instrumentation and Measurement, IEEE Transactions on, 49(1), 114-119. [29] Hofmann, M., Bloss, M., Weigel, R., Fischer, G., & Kissinger, D. (2012). Non-invasive glucose monitoring using open electromagnetic waveguides. Paper presented at the Microwave Conference (EuMC), 2012 42nd European. [30] Chen, Y.-J., Zhuo, K.-L., Kang, L., Xu, S.-J., & Wang, J.-J. (2008). Dielectric constants for binary saccharide-water solutions at 278.15-313.15 K. Acta Physico-Chimica Sinica, 24(1), 91-96. [31] Walstra, P., & Jenness, R. (1984). Dairy chemistry & physics. John Wiley & Sons. [32] Oakes, J. (1976). Thermally denatured proteins. Nuclear magnetic resonance, binding isotherm and chemical modification studies of thermally denatured bovine serum albumin. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 72, 228-237. [33] Castelino, K., Milanovic, V., McCormick, D., Tien, N., & Majumdar, A. (2004). Microchip for temperature dependent dielectric spectroscopy of biomolecular reactions. Special publication-royal society of chemistry, 297(1), 524-526. [34] Bakhshiani, M., Suster, M. A., & Mohseni, P. (2016). A 9 MHz–2.4 GHz Fully Integrated Transceiver IC for a Microfluidic-CMOS Platform Dedicated to Miniaturized Dielectric Spectroscopy. [35] Feldman, Y., Ermolina, I., & Hayashi, Y. (2003). Time domain dielectric spectroscopy study of biological systems. IEEE transactions on dielectrics and electrical insulation, 10(5), 728-753. [36] Yang, L., Li, Y., Griffis, C. L., & Johnson, M. G. (2004). Interdigitated microelectrode (IME) impedance sensor for the detection of viable Salmonella typhimurium. Biosensors and bioelectronics, 19(10), 1139-1147. [37] Wu, S. Y., Yang, C., Hsu, W., & Lin, L. (2015). 3D-printed microelectronics for integrated circuitry and passive wireless sensors. Microsystems & Nanoengineering, 1. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51042 | - |
| dc.description.abstract | 微波於生物型感測器領域的應用,可具備即時偵測、樣品無須前處理、操作簡便、體積小與成本低廉等特殊優點,因此而廣受重視。但其需要體積較為龐大且價格昂貴的實驗室儀器協助量測,無法整合運用於一般消費性電子產品中。隨著資訊科技的發展與攜帶式智慧型裝置的普及,微小化的生物感測器已成為未來的發展趨勢。
本研究設計開發新型微波生物感測器系統,以積體電路晶片搭配印刷電路板技術製作實現,透過自動回授控制程序檢測物質於感測器上所造成之容抗與阻抗效應,檢測結果可分別對應至物質介電係數之實部與虛部,具有體積小、低功耗、低工作頻率、即時偵測、免標記、靈敏度高與低成本等優點,並可透過時域積分累積方法,提升檢測結果之訊雜比。 本研究對所提出之生物感測器系統,進行功能性驗證以及物質樣本試驗分析,並且發展自動化使用者介面,增加量測程序之便利性。研究成果可在應用方面快速分析物質成分,並與智慧型裝置等平台結合作為IOT服務應用之工具。 | zh_TW |
| dc.description.abstract | Biosensors that use microwave resonators are compact, easy to operate, low-cost, and capable of real-time monitoring. These advantages, combined with eliminating the need for sample pretreatment, make microwave biosensors the object of widespread attention. However, due to their relatively large size and the expensive laboratory instruments necessary for conducting measurements, they cannot be integrated into general consumer electronic products. With current development in information technology and popularity of portable smart devices, miniature biosensors have become a development trend for the future.
In this study, a microwave biosensor system was developed using the technology and process of integrated circuit (IC) and printed circuit board (PCB) to measure, by automatic feedback control, sample-induced capacitance and impedance which correspond respectively to real and imaginary parts of relative permittivity. The device exhibited small size, low power consumption, low operating frequency, label-free detection, high sensitivity, and low cost. In addition, the signal to noise ratio increased with the integration interval. Function validation and sample analysis were performed on the biosensor system. In order to increase the convenience of the detection process, an automated a graphical user interface was developed. In summary, the described system is capable of rapid sample analysis and when integrated into smart device platforms, is a potentially valuable tool for IOT service. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:24:16Z (GMT). No. of bitstreams: 1 ntu-105-R03548005-1.pdf: 3932699 bytes, checksum: a3fdf23a677d0f2221e90a928dbf7796 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES x Chapter 1 諸論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 生物感測器簡介 2 1.2.2 微波生物感測器之分類 3 1.2.3 感測器與量測儀器之系統整合 5 1.3 研究動機 8 1.4 研究貢獻 9 1.5 章節介紹 10 Chapter 2 基本感測理論與感測器系統架構 11 2.1 物質的介電特性 11 2.2 電場感測理論與元件 12 2.3 感測器系統架構 15 2.3.1 物質損耗檢測電路架構 16 2.3.2 頻率飄移檢測電路架構 17 Chapter 3 感測電路系統模擬與設計 18 3.1 指叉型平面感測元件設計 18 3.2 物質損耗回授補償介面電路設計 22 3.2.1 電感電容諧振振盪器感測電路 22 3.2.2 損耗檢出與回授補償電路 25 3.3 頻率飄移檢測介面電路設計 27 3.3.1 CMOS軌對軌邏輯電路 27 3.3.2 TSPC高頻正反器電路 28 3.3.3 主僕式正反器電路 31 3.3.4 電流開關與電荷放大器電路 32 3.4 自動化數位程序設計 34 3.4.1 自動化量測流程 34 3.4.2 有限狀態機設計 35 3.4.3 使用者視覺化介面 36 Chapter 4 感測器系統量測與應用 37 4.1 感測器系統製作與架設 37 4.1.1 感測電路板製作 37 4.1.2 等效電氣模型萃取 38 4.1.3 感測系統平台架設 39 4.2 電路系統設計驗證實驗 40 4.2.1 振盪器頻率量測 40 4.2.2 數位類比轉換電流源功能驗證 42 4.2.3 除頻器電路功能驗證 43 4.2.4 電荷放大器電路功能驗證 44 4.2.5 數位比較器電路功能驗證 45 4.3 物質檢測實驗 47 4.3.1 液體樣本體積試驗 47 4.3.2 單一樣本辨別試驗 49 4.3.3 醇類混合溶液檢測試驗 50 4.3.4 葡萄糖混合溶液檢測試驗 53 4.3.5 蛋白質構型檢測試驗 55 4.3.6 固體樣本檢測試驗 57 4.4 感測器系統之應用 59 4.4.1 應用背景簡介 59 4.4.2 一般使用者情境檢測試驗 60 4.4.3 生產線動態檢測試驗 62 Chapter 5 結論及未來展望 66 REFERENCE 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微波生物感測器 | zh_TW |
| dc.subject | 介電係數 | zh_TW |
| dc.subject | 微小化 | zh_TW |
| dc.subject | 低功耗 | zh_TW |
| dc.subject | 自動控制 | zh_TW |
| dc.subject | 微波生物感測器 | zh_TW |
| dc.subject | 介電係數 | zh_TW |
| dc.subject | 微小化 | zh_TW |
| dc.subject | 低功耗 | zh_TW |
| dc.subject | 自動控制 | zh_TW |
| dc.subject | Microwave biosensor | en |
| dc.subject | Relative permittivity | en |
| dc.subject | Small size | en |
| dc.subject | Microwave biosensor | en |
| dc.subject | Automatic control | en |
| dc.subject | Low power consumption | en |
| dc.subject | Small size | en |
| dc.subject | Automatic control | en |
| dc.subject | Low power consumption | en |
| dc.subject | Relative permittivity | en |
| dc.title | 微型化自動介電生物感測器系統之設計與應用 | zh_TW |
| dc.title | Design and Application of Miniaturized Automatic Dielectric Spectroscopy System for Biological Materials | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 彭盛裕(Sheng-Yu Peng) | |
| dc.contributor.oralexamcommittee | 莊子肇(Tzu-Chao Chuang) | |
| dc.subject.keyword | 微波生物感測器,介電係數,微小化,低功耗,自動控制, | zh_TW |
| dc.subject.keyword | Microwave biosensor,Relative permittivity,Small size,Low power consumption,Automatic control, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU201600399 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-06-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| Appears in Collections: | 醫學工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-105-1.pdf Restricted Access | 3.84 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
