Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51033
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳林祈
dc.contributor.authorKeng-Jung LEEen
dc.contributor.author李庚融zh_TW
dc.date.accessioned2021-06-15T13:24:08Z-
dc.date.issued2016
dc.date.submitted2016-06-21
dc.identifier.citationAbe, M. and D. Kufe. 1993. Characterization of Cis-Acting Elements Regulating Transcription of the Human Df3 Breast Carcinoma-Associated Antigen (Muc1) Gene. P Natl Acad Sci USA. 90(1): 282-286.
Ahmad, R., D. Raina, M.D. Joshi, T. Kawano, J. Ren, S. Kharbanda and D. Kufe. 2009. MUC1-C Oncoprotein Functions as a Direct Activator of the Nuclear Factor-κB p65 Transcription Factor. Cancer Res. 69(17): 7013-7021.
Ahmad, R., H. Rajabi, M. Kosugi, M.D. Joshi, M. Alam, B. Vasir, T. Kawano, S. Kharbanda and D. Kufe. 2011. MUC1-C Oncoprotein Promotes STAT3 Activation in an Autoinductive Regulatory Loop. Sci Signal. 4(160).
Bieche, I. and R. Lidereau. 1997. A gene dosage effect is responsible for high overexpression of the MUC1 gene observed in human breast tumors. Cancer Genet Cytogen. 98(1): 75-80.
Brugarolas, J., C. Chandrasekaran, J.I. Gordon, D. Beach, T. Jacks and G.J. Hannon. 1995. Radiation-Induced Cell-Cycle Arrest Compromised by P21 Deficiency. Nature. 377(6549): 552-557.
Deng, C., P. Zhang, J.W. Harper, S.J. Elledge and P. Leder. 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 82(4): 675-684.
Foster, K.W., A.R. Frost, P. McKie-Bell, C.Y. Lin, J.A. Engler, W.E. Grizzle and J.M. Ruppert. 2000. Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res. 60(22): 6488-6495.
Gendler, S., J. Taylorpapadimitriou, T. Duhig, J. Rothbard and J. Burchell. 1988. A Highly Immunogenic Region of a Human Polymorphic Epithelial Mucin Expressed by Carcinomas Is Made up of Tandem Repeats. J Biol Chem. 263(26): 12820-12823.
Glinsky, G.V., V.V. Glinsky, A.B. Ivanova and C.J. Hueser. 1997. Apoptosis and metastasis: Increased apoptosis resistance of metastatic cancer cells is associated with the profound deficiency of apoptosis execution mechanisms. Cancer Lett. 115(2): 185-193.
Gulley, J.L., P.M. Arlen, K.Y. Tsang, J. Yokokawa, C. Palena, D.J. Poole, C. Remondo, V. Cereda, J.L. Jones, M.P. Pazdur, J.P. Higgins, J.W. Hodge, S.M. Steinberg, H. Kotz, W.L. Dahut and J. Schlom. 2008. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin Cancer Res. 14(10): 3060-3069.
Hainaut, P., T. Soussi, B. Shomer, M. Hollstein, M. Greenblatt, E. Hovig, C.C. Harris and R. Montesano. 1997. Database of p53 gene somatic mutations in human tumors and cell lines: Updated compilation and future prospects. Nucleic Acids Res. 25(1): 151-157.
Huang, C.C., Z.L. Liu, X.N. Li, S.K. Bailey, C.D. Nail, K.W. Foster, A.R. Frost, J.M. Ruppert and S.M. Lobo-Ruppert. 2005. KLF4 and PCNA identify stages of tumor initiation in a conditional model of cutaneous squamous epithelial neoplasia. Cancer Biol Ther. 4(12): 1401-1408.
Ibrahim, N.K., K.O. Yariz, I. Bondarenko, A. Manikhas, V. Semiglazov, A. Alyasova, V. Komisarenko, Y. Shparyk, J.L. Murray, D. Jones, S. Senderovich, A. Chau, F. Erlandsson, G. Acton and M. Pegram. 2011. Randomized Phase II Trial of Letrozole plus Anti-MUC1 Antibody AS1402 in Hormone Receptor-Positive Locally Advanced or Metastatic Breast Cancer. Clin Cancer Res. 17(21): 6822-6830.
Jaattela, M. 1999. Escaping cell death: Survival proteins in cancer. Exp Cell Res. 248(1): 30-43.
Jemal, A., F. Bray, M.M. Center, J. Ferlay, E. Ward and D. Forman. 2011. Global Cancer Statistics. Ca-Cancer J Clin. 61(2): 69-90.
Joshi, M.D., R. Ahmad, L. Yin, D. Raina, H. Rajabi, G. Bubley, S. Kharbanda and D. Kufe. 2009. MUC1 oncoprotein is a druggable target in human prostate cancer cells. Mol Cancer Ther. 8(11): 3056-3065.
Ko, L.J. and C. Prives. 1996. p53: Puzzle and paradigm. Gene Dev. 10(9): 1054-1072.
Kovarik, A., N. Peat, D. Wilson, S.J. Gendler and J. Taylorpapadimitriou. 1993. Analysis of the Tissue-Specific Promoter of the Muc1 Gene. J Biol Chem. 268(13): 9917-9926.
Kufe, D.W. 2013. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene. 32(9): 1073-1081.
Lacunza, E., M. Baudis, A.G. Colussi, A. Segal-Eiras, M.V. Croce and M.C. Abba. 2010. MUC1 oncogene amplification correlates with protein overexpression in invasive breast carcinoma cells. Cancer Genet Cytogen. 201(2): 102-110.
Lagow, E.L. and D.D. Carson. 2002. Synergistic stimulation of MUC1 expression in normal breast epithelia and breast cancer cells by interferon-gamma and tumor necrosis factor-alpha. J Cell Biochem. 86(4): 759-772.
Lane, D.P. 1992. Cancer - P53, Guardian of the Genome. Nature. 358(6381): 15-16.
Leng, Y.M., C. Cao, J. Ren, L. Huang, D.S. Chen, M. Ito and D. Kufe. 2007. Nuclear import of the MUC1-C oncoprotein is mediated by nucleoporin Nup62. J Biol Chem. 282(27): 19321-19330.
Lengauer, T. and M. Rarey. 1996. Computational methods for biomolecular docking. Curr Opin Struc Biol. 6(3): 402-406.
Letai, A. 2009. Puma strikes Bax. J Cell Biol. 185(2): 189-191.
Levine, A.J. 1997. p53, the cellular gatekeeper for growth and division. Cell. 88(3): 323-331.
Levitin, F., O. Stern, M. Weiss, C. Gil-Henn, R. Ziv, Z. Prokocimer, N.I. Smorodinsky, D.B. Rubinstein and D.H. Wreschner. 2005. The MUC1 SEA module is a self-cleaving domain. J Biol Chem. 280(39): 33374-33386.
Li, Y.Q., D. Liu, D.S. Chen, S. Kharbanda and D. Kufe. 2003. Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Clin Cancer Res. 9(16): 6251S-6251S.
Linzer, D.I.H. and A.J. Levine. 1979. Characterization of a 54k Dalton Cellular Sv40 Tumor-Antigen Present in Sv40-Transformed Cells and Uninfected Embryonal Carcinoma-Cells. Cell. 17(1): 43-52.
Marin, F., G. Luquet, B. Marie and D. Medakovic. 2008. Molluscan shell proteins: Primary structure, origin, and evolution. Curr Top Dev Biol. 80209-276.
Mcguckin, M.A., M.D. Walsh, B.G. Hohn, B.G. Ward and R.G. Wright. 1995. Prognostic-Significance of Muc1 Epithelial Mucin Expression in Breast-Cancer. Hum Pathol. 26(4): 432-439.
McKeage, K. and C.M. Perry. 2002. Trastuzumab - A review of its use in the treatment of metastatic breast cancer overexpressing HER2. Drugs. 62(1): 209-243.
Mehta, N.R., G.T. Wurz, R.A. Burich, B.E. Greenberg, S. Griffey, A. Gutierrez, K.E. Bell, J.L. McCall, M. Wolf and M. DeGregorio. 2012. L-BLP25 Vaccine plus Letrozole Induces a TH1 Immune Response and Has Additive Antitumor Activity in MUC1-Expressing Mammary Tumors in Mice. Clin Cancer Res. 18(10): 2861-2871.
Merlo, G.R., J. Siddiqui, C.S. Cropp, D.S. Liscia, R. Lidereau, R. Callahan and D.W. Kufe. 1989. Frequent Alteration of the Df3 Tumor-Associated Antigen Gene in Primary Human-Breast Carcinomas. Cancer Res. 49(24): 6966-6971.
Mohebtash, M., K.Y. Tsang, R.A. Madan, N.Y. Huen, D.J. Poole, C. Jochems, J. Jones, T. Ferrara, C.R. Heery, P.M. Arlen, S.M. Steinberg, M. Pazdur, M. Rauckhorst, E.C. Jones, W.L. Dahut, J. Schlom and J.L. Gulley. 2011. A Pilot Study of MUC-1/CEA/TRICOM Poxviral-Based Vaccine in Patients with Metastatic Breast and Ovarian Cancer. Clin Cancer Res. 17(22): 7164-7173.
Morishita, R., Y. Kaneda and T. Ogihara. 2003. Therapeutic potential of oligonucleotide-based therapy in cardiovascular disease. Biodrugs. 17(6): 383-389.
Pandya, A.Y., L.I. Talley, A.R. Frost, T.J. Fitzgerald, V. Trivedi, M. Chakravarthy, D.C. Chhieng, W.E. Grizzle, J.A. Engler, H. Krontiras, K.I. Bland, A.F. LoBuglio, S.M. Lobo-Ruppert and J.M. Ruppert. 2004. Nuclear localization of KLF4 is associated with an aggressive phenotype in early-stage breast cancer. Clin Cancer Res. 10(8): 2709-2719.
Pegram, M.D., V.F. Borges, N. Ibrahim, J. Fuloria, C. Shapiro, S. Perez, K. Wang, F.S. Stark and N.C. Luck. 2009. Phase I dose escalation pharmacokinetic assessment of intravenous humanized anti-MUC1 antibody AS1402 in patients with advanced breast cancer. Breast Cancer Res. 11(5).
Rahn, J.J., L. Dabbagh, M. Pasdar and J.C. Hugh. 2001. The importance of MUC1 cellular localization in patients with breast carcinoma - An immunohistologic study of 71 patients and review of the literature. Cancer. 91(11): 1973-1982.
Raina, D., R. Ahmad, M.D. Joshi, L. Yin, Z.K. Wu, T. Kawano, B. Vasir, D. Avigan, S. Kharbanda and D. Kufe. 2009. Direct Targeting of the Mucin 1 Oncoprotein Blocks Survival and Tumorigenicity of Human Breast Carcinoma Cells. Cancer Res. 69(12): 5133-5141.
Raina, D., Y. Uchida, A. Kharbanda, H. Rajabi, G. Panchamoorthy, C. Jin, S. Kharbanda, M. Scaltriti, J. Baselga and D. Kufe. 2014. Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene. 33(26): 3422-3431.
Rakha, E.A., R.W.G. Boyce, D. Abd El-Rehim, T. Kurien, A.R. Green, E.C. Paish, J.F.R. Robertson and I.O. Ellis. 2005. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Modern Pathol. 18(10): 1295-1304.
Rowland, B.D., R. Bernards and D.S. Peeper. 2005. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol. 7(11): 1074-1082.
Rowland, B.D. and D.S. Peeper. 2006. KLF4, p21 and context-dependent opposing forces in cancer. Nature Reviews Cancer. 6(1): 11-23.
Schuetz, A., D. Nana, C. Rose, G. Zocher, M. Milanovic, J. Koenigsmann, R. Blasig, U. Heinemann and D. Carstanjen. 2011. The structure of the Klf4 DNA-binding domain links to self-renewal and macrophage differentiation. Cellular and molecular life sciences : CMLS. 68(18): 3121-3131.
Segre, J.A., C. Bauer and E. Fuchs. 1999. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet. 22(4): 356-360.
Shields, J.M., R.J. Christy and V.W. Yang. 1996. Identification and characterization of a gene encoding a gut-enriched Kruppel-like factor expressed during growth arrest. J Biol Chem. 271(33): 20009-20017.
Siddiqui, J., M. Abe, D. Hayes, E. Shani, E. Yunis and D. Kufe. 1988. Isolation and Sequencing of a Cdna Coding for the Human Df3 Breast Carcinoma-Associated Antigen. P Natl Acad Sci USA. 85(7): 2320-2323.
Smith, M.L. and Y.R. Seo. 2002. p53 regulation of DNA excision repair pathways. Mutagenesis. 17(2): 149-156.
Souissi, I., P. Ladam, J.A.H. Cognet, S. Le Coquil, N. Varin-Blank, F. Baran-Marszak, V. Metelev and R. Fagard. 2012. A STAT3-inhibitory hairpin decoy oligodeoxynucleotide discriminates between STAT1 and STAT3 and induces death in a human colon carcinoma cell line. Mol Cancer. 11.
Suske, G., E. Bruford and S. Philipsen. 2005. Mammalian SP/KLF transcription factors: Bring in the family. Genomics. 85(5): 551-556.
Tetreault, M.P., Y. Yang and J.P. Katz. 2013. Kruppel-like factors in cancer. Nature reviews. Cancer. 13(10): 701-713.
Wei, X.L., H. Xu and D. Kufe. 2005. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell. 7(2): 167-178.
Wei, X.L., H. Xu and D. Kufe. 2007. Human mucin 1 oncoprotein represses transcription of the p53 tumor suppressor gene. Cancer Res. 67(4): 1853-1858.
Wu, J.X. 1996. Apoptosis and angiogenesis: Two promising tumor markers in breast cancer. Anticancer Res. 16(4B): 2233-2239.
Yoon, H.S., X. Chen and V.W. Yang. 2003. Kruppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem. 278(4): 2101-2105.
Yu, F., J. Li, H. Chen, J. Fu, S. Ray, S. Huang, H. Zheng and W. Ai. 2011. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene. 30(18): 2161-2172.
Zhang, W., D.E. Geiman, J.M. Shields, D.T. Dang, C.S. Mahatan, K.H. Kaestner, J.R. Biggs, A.S. Kraft and V.W. Yang. 2000. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem. 275(24): 18391-18398.
Zhou, Y.C., H. Rajabi and D. Kufe. 2011. Mucin 1 C-Terminal Subunit Oncoprotein Is a Target for Small-Molecule Inhibitors. Mol Pharmacol. 79(5): 886-893.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51033-
dc.description.abstract上皮黏蛋白1-羧基端(MUC1-COOH; MUC1-C)與Kruppel-like factor 4 (KLF4) 轉錄因子皆與癌細胞凋亡具有高度的相關性。PE21區域位於腫瘤抑制基因p53之啟動子(promoter)中;而MUC1-C 會與KLF4形成二聚體(MUC1-C/KLF4)鍵結至PE21區域進而抑制p53表現。本研究設計之誘導寡核苷酸(decoy oligonucleotide; dODNs)為雙股具有21個核苷酸,其序列由PE21區域演繹而得。本研究探討dODNs-5’與dODNs-3’兩種序列,鍵結在MUC1-C/KLF4複合體,去阻斷MUC1-C/KLF4複合體與PE21之間鍵結作用,進而活化p53基因,導致人類乳癌細胞(MCF-7)凋亡。在細胞凋亡實驗中,將兩組dODNs轉染至MCF-7 中分別使29.4%與24.5%的細胞凋亡。同時研究將 dODNs的序列隨機組合之新序列為負控制組(scr-1與scr-2),對照實驗顯示生存率依序為83.3%、81.5%。其中空白實驗組(blank)的生存率為81.1%。此外,在基因表現方面,可分別促進p53基因表現達2.99與2.72倍。進一步針對dODNs進行毒性測試,將dODNs轉染至人類纖維母細胞(fibroblast)生存率皆在90%以上。最後,我們也利用免疫染色法,顯示出兩組dODNs位於細胞核內,說明了本研究在驗證機制上,dODNs可進入細胞核抑制MUC1-C/KLF4複合體與PE21作用。由以上結果顯示,本研究提出一個策略以MUC1-C/KLF4複合體為標靶的dODNs,具有選擇性地使MCF-7凋亡。zh_TW
dc.description.abstractThe MUC1 COOH-terminal subunit (MUC1-C) and the Kruppel-like factor 4 (KLF4) transcription factor are both highly associated with cell apoptosis. The MUC1-C binds to KLF4 to form the MUC1-C/KLF4 complex, which represses p53 transcription by binding to the PE21 element within the tumor suppressor p53 promoter. In this work, we designed two 21-mer double-stranded decoy oligonucleotides (dODNs-5’ and dODNs-3’) based on the MUC1-C/KLF4 PE21 element. Blocking the interaction between MUC1-C/KLF4 and PE21 by the dODNss resulted in up-regulating p53 gene expression and inducing human breast cancer cell apoptosis. In apoptosis assay, transfection of the dODNs-5’ and the dODNs-3’ respectively resulted in 29.4% and 24.5% apoptosis. The viability of transfection of the negative control scrambled-sequence oligonucleotides (1-scr and 2-scr) and the blank control are 83.3%、81.5% and 81.1% sequentially. Both of the dODNs-5’ and dODNs-3’ up-regulated p53 gene expression 2.99 and 2.72 times, respectively. Besides, we chose the fibroblast cells served as a normal cell control. In the fibroblast cells, transfection of the dODNss and the SCRs showed that the viability were all at least 90% in the apoptosis assay. We also showed that the dODNss interacted with MUC1-C/KLF4 in nucleus by immunofluorescence assay. In comparison, the SCRs localize at the outside of the nucleus. To conclude, inhibition of the MUC1-C / KLF4 complex by using a transcription factor decoy can induce human breast cancer cell apoptosis.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:24:08Z (GMT). No. of bitstreams: 1
ntu-105-R02631043-1.pdf: 29400541 bytes, checksum: 1fe4b51dc1c5943803acf81f0d8c376e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 i
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1前言 1
1.2研究動機 3
1.3研究目的 5
1.4研究架構 7
第二章 文獻探討 10
2.1啟動子技術(Promoter Technique)應用於癌症療法 10
2.2 MUC1-C致癌蛋白介紹與標靶 MUC1-C的策略 12
2.2.1 MUC1-C與乳癌的關係 12
2.1.2標靶MUC1的策略 17
2.3 KLF4介紹與癌症的關係 20
2.4 p53與癌症的關係 23
2.4.1 p53的功能 24
2.5生物分子嵌合 25
第三章 材料與實驗方法 26
3.1本研究使用之材料與儀器 26
3.1.1實驗使用的藥品 26
3.1.2本研究所使用到的儀器 28
3.1.3 dODNs與核酸引子 30
3.2實驗步驟 32
3.2.1細胞培養 32
3.2.2細胞繼代培養 32
3.2.3細胞計數 32
3.2.4轉染誘導寡核苷酸 33
3.2.5細胞存活率分析 33
3.2.6 ANNEXIN-V/PI雙染法 34
3.2.7西方點墨法檢測基因水準 34
3.2.8 PI染色檢定細胞週期 37
3.2.9免疫染色法 37
第四章 結果與討論 39
4.1誘導寡核苷酸之轉染效率 39
4.1.1 dODNss與SCRs對人類乳癌細胞轉染之轉染效率比較 40
4.1.2誘導寡核苷酸轉染至MCF-7與fibroblast之轉染效率比較 43
4.2誘導寡核苷酸對於人類乳癌細胞之影響 46
4.2.1誘導寡核苷酸對於人類乳癌細胞細胞凋亡之型態 46
4.2.2誘導寡核苷酸對於人類乳癌細胞活性之影響...................................................50
4.2.3誘導寡核苷酸誘導人類乳癌細胞程序性凋亡 52
4.2.4誘導寡核苷酸對於人類纖維母細胞細胞週期之影響..................................... 56
4.3誘導寡核苷酸對於人類纖維母細胞之影響 58
4.3.1誘導寡核苷酸對於人類纖維母細胞生存率之影響 59
4.3.2誘導寡核苷酸對於人類纖維母細胞程序性凋亡之分析 61
4.3.3誘導寡核苷酸對於人類纖維母細胞細胞週期之影響 64
4.4誘導寡核苷酸對於人類乳癌細胞促進腫瘤抑制基因p53 66
4.5利用電腦輔助嵌合軟體檢視 68
4.5.1以3D-DART預測誘導寡核苷酸之雙股結構 68
4.5.2利用I-TASSER 預測MUC1-C的三維結構 69
4.5.3誘導寡核苷酸與MUC1-C嵌合的結果 70
4.6免疫染色檢視誘導寡核苷酸與MUC1-C交互作用 71
第五章 結論與未來展望 74
5.1結果摘要 74
5.2結論 77
5.3未來展望 78
參考文獻 79
附錄 88
附錄一 人類乳癌細胞與人類纖維母細胞之細胞型態 88
附錄二 以免疫染色檢視KLF4 在細胞中的位置 90
dc.language.isozh-TW
dc.subjectbreast canceren
dc.subjectKruppel-like factor 4(KLF4)en
dc.subjectKruppel-like factor 4(KLF4)en
dc.subjectp53 tumor suppressor geneen
dc.subjectMUC1 COOH-terminal subunit (MUC1-C)en
dc.subjectMUC1 COOH-terminal subunit (MUC1-C)en
dc.subjectp53 tumor suppressor geneen
dc.subjectdecoy oligonucleotideen
dc.subjectbreast canceren
dc.subjectdecoy oligonucleotideen
dc.title以誘餌寡核苷酸抑制MUC1-C / KLF4複合體
與誘導人類乳癌細胞凋亡之研究
zh_TW
dc.titleOn the Inhibition of MUC1-C and KLF4 Complex for Inducing Human Breast Cancer Cell Apoptosis Using a Decoy Oligonucleotideen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳倩瑜,廖泰慶,侯詠德
dc.subject.keyword上皮黏蛋白1-羧基端(MUC1-COOH,MUC1-C),Kruppel-like factor 4(KLF4),腫瘤抑制基因p53,誘導寡核?酸,乳癌,zh_TW
dc.subject.keywordMUC1 COOH-terminal subunit (MUC1-C),Kruppel-like factor 4(KLF4),p53 tumor suppressor gene,decoy oligonucleotide,breast cancer,en
dc.relation.page93
dc.identifier.doi10.6342/NTU201600411
dc.rights.note有償授權
dc.date.accepted2016-06-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
Appears in Collections:生物機電工程學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
28.71 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved