Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51030
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷(Chih-Ting Lin)
dc.contributor.authorHsiao-Ting Hsuehen
dc.contributor.author薛孝亭zh_TW
dc.date.accessioned2021-06-15T13:24:06Z-
dc.date.available2021-07-06
dc.date.copyright2016-07-06
dc.date.issued2016
dc.date.submitted2016-06-21
dc.identifier.citation1. Bard, A.J. and L.R. Faulkner, Electrochemical methods : fundamentals and applications. 2nd ed. 2001, New York: Wiley & Sons, Inc.
2. Ibach, H., Physics of surfaces and interfaces. Vol. 10. 2006: Springer.
3. Kirby, B.J. Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. 2009 [cited 2009; Available from: http://www.kirbyresearch.com/index.cfm/wrap/textbook/microfluidicsnanofluidicsse51.html.
4. Evans, D.F. and H. Wennerström, The colloidal domain: where Physics. Chemistry, Biology, and Technology Meet, 1999. 2: p. 193-197.
5. Ohshima, H. and T. Kondo, Electrokinetic flow between two parallel plates with surface charge layers: Electro-osmosis and streaming potential. Journal of Colloid and Interface Science, 1990. 135(2): p. 443-448.
6. Chapman, D.L., LI. A contribution to the theory of electrocapillarity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1913. 25(148): p. 475-481.
7. Bocquet, L. and E. Charlaix, Nanofluidics, from bulk to interfaces. Chemical Society Reviews, 2010. 39(3): p. 1073-1095.
8. Leroy, P., C. Tournassat, and M. Bizi, Influence of surface conductivity on the apparent zeta potential of TiO 2 nanoparticles. Journal of colloid and interface science, 2011. 356(2): p. 442-453.
9. Siria, A., et al., Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature, 2013. 494(7438): p. 455-458.
10. Gu, Y. and D. Li, The ζ-potential of glass surface in contact with aqueous solutions. Journal of Colloid and Interface Science, 2000. 226(2): p. 328-339.
11. Jacobs, H., et al., Resolution and contrast in Kelvin probe force microscopy. Journal of Applied Physics, 1998. 84(3): p. 1168-1173.
12. Kirby, B.J. and E.F. Hasselbrink, Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis, 2004. 25(2): p. 187-202.
13. BRUKER. Surface Potential Microscopy – SPoM. 2011 [cited 2016; Available from: http://blog.brukerafmprobes.com/guide-to-spm-and-afm-modes/surface-potential-microscopy-spom/.
14. Organization, W.H. Health work force: Density of physician. 2015; Available from: http://gamapserver.who.int/gho/interactive_charts/health_workforce/PhysiciansDensity_Total/atlas.html.
15. Kost, G.J., Guidelines for point-of-care testing. Improving patient outcomes. American journal of clinical pathology, 1995. 104(4 Suppl 1): p. S111-27.
16. McNerney, R. and P. Daley, Towards a point-of-care test for active tuberculosis: obstacles and opportunities. Nature Reviews Microbiology, 2011. 9(3): p. 204-213.
17. Birkhahn, R.H., et al., Estimating the clinical impact of bringing a multimarker cardiac panel to the bedside in the ED. The American journal of emergency medicine, 2011. 29(3): p. 304-308.
18. medical, W. The Power of Point-of-Care Testing (POCT). Available from: http://www.whitmiremedical.com/pages/POC.htm.
19. Bührer-Sékula, S., et al., Simple and fast lateral flow test for classification of leprosy patients and identification of contacts with high risk of developing leprosy. Journal of Clinical Microbiology, 2003. 41(5): p. 1991-1995.
20. Payne, D., Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bulletin of the World Health Organization, 1988. 66(5): p. 621.
21. Kemp, B.E., et al., Autologous red cell agglutination assay for HIV-1 antibodies: simplified test with whole blood. Science, 1988. 241(4871): p. 1352-1354.
22. Chin, C.D., V. Linder, and S.K. Sia, Commercialization of microfluidic point-of-care diagnostic devices. Lab on a Chip, 2012. 12(12): p. 2118-2134.
23. Bashir, R., BioMEMS: state-of-the-art in detection, opportunities and prospects. Advanced drug delivery reviews, 2004. 56(11): p. 1565-1586.
24. Resnick, G. Biosensors Overview. 2010; Available from: http://dels.nas.edu/resources/static-assets/bls/miscellaneous/CAS%20NAS%20Biosensor%203-Resnick.pdf.
25. Spichiger-Keller, U.E., Chemical sensors and biosensors for medical and biological applications. 2008: John Wiley & Sons.
26. Grieshaber, D., et al., Electrochemical biosensors-sensor principles and architectures. Sensors, 2008. 8(3): p. 1400-1458.
27. Clark, L.C. and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of sciences, 1962. 102(1): p. 29-45.
28. Updike, S. and G. Hicks, The enzyme electrode. Nature, 1967. 214: p. 986-988.
29. YSI History. Available from: https://www.ysi.com/about-ysi/history.
30. He, L., et al., Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization. Journal of the American Chemical Society, 2000. 122(38): p. 9071-9077.
31. Nelson, B.P., et al., Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Analytical Chemistry, 2001. 73(1): p. 1-7.
32. Lazcka, O., F.J.D. Campo, and F.X. Munoz, Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and Bioelectronics, 2007. 22(7): p. 1205-1217.
33. Subramanian, A., J. Irudayaraj, and T. Ryan, A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E-coli O157 : H7. Biosensors & Bioelectronics, 2006. 21(7): p. 998-1006.
34. Masson, J.F., et al., Sensitive and real-time fiber-optic-based surface plasmon resonance sensors for myoglobin and cardiac troponin I. Talanta, 2004. 62(5): p. 865-870.
35. Meyer, M.H.F., M. Hartmann, and M. Keusgen, SPR-based immunosensor for the CRP detection - A new method to detect a well known protein. Biosensors & Bioelectronics, 2006. 21(10): p. 1987-1990.
36. Besteman, K., et al., Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Letters, 2003. 3(6): p. 727-730.
37. Cass, A.E.G., et al., Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry, 1984. 56(4): p. 667-671.
38. Li, Y., H.J. Lee, and R.M. Corn, Fabrication and characterization of RNA aptamer microarrays for the study of protein-aptamer interactions with SPR imaging. Nucleic Acids Research, 2006. 34(22): p. 6416-6424.
39. Tombelli, S., et al., Aptamer-based biosensors for the detection of HIV-1 Tat protein. Bioelectrochemistry, 2005. 67(2): p. 135-141.
40. Yang, L., Y. Li, and G.F. Erf, Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7. Analytical Chemistry, 2004. 76(4): p. 1107-1113.
41. Farace, G., et al., Reagentless biosensing using electrochemical impedance spectroscopy. Bioelectrochemistry, 2002. 55(1-2): p. 1-3.
42. Lillie, G., P. Payne, and P. Vadgama, Electrochemical impedance spectroscopy as a platform for reagentless bioaffinity sensing. Sensors and Actuators B-Chemical, 2001. 78(1-3): p. 249-256.
43. Berggren, C., B. Bjarnason, and G. Johansson, Capacitive biosensors. Electroanalysis, 2001. 13(3): p. 173-180.
44. Berggren, C. and G. Johansson, Capacitance measurements of antibody-antigen interactions in a flow system. Analytical chemistry, 1997. 69(18): p. 3651-3657.
45. Mirsky, V.M., M. Riepl, and O.S. Wolfbeis, Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensors & Bioelectronics, 1997. 12(9-10): p. 977-989.
46. Huber, F., et al., Label free analysis of transcription factors using microcantilever arrays. Biosensors & Bioelectronics, 2006. 21(8): p. 1599-1605.
47. Liss, M., et al., An aptamer-based quartz crystal protein biosensor. Analytical Chemistry, 2002. 74(17): p. 4488-4495.
48. Shankaran, D.R., K.V. Gobi, and N. Miura, Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 2007. 121(1): p. 158-177.
49. Cui, Y., et al., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001. 293(5533): p. 1289-1292.
50. Chen, R.J., et al., Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proceedings of the National Academy of Sciences, 2003. 100(9): p. 4984-4989.
51. Jena, B.K. and C.R. Raj, Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles. Analytical chemistry, 2006. 78(18): p. 6332-6339.
52. Daniels, J.S. and N. Pourmand, Label‐free impedance biosensors: Opportunities and challenges. Electroanalysis, 2007. 19(12): p. 1239-1257.
53. Newman, A.L., K.W. Hunter, and W.D. Stanbro. The capacitive affinity sensor: a new biosensor. in Chemical Sensors: 2nd International Meeting. 1986.
54. Taylor, R.F., I.G. Marenchic, and E.J. Cook, An acetylcholine receptor-based biosensor for the detection of cholinergic agents. Analytica Chimica Acta, 1988. 213: p. 131-138.
55. Taylor, R.F., I.G. Marenchic, and R.H. Spencer, Antibody-and receptor-based biosensors for detection and process control. Analytica chimica acta, 1991. 249(1): p. 67-70.
56. Radke, S.A. and E.C. Alocilja, A high density microelectrode array biosensor for detection of E-coli O157 : H7. Biosensors & Bioelectronics, 2005. 20(8): p. 1662-1667.
57. Bain, C.D., et al., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989. 111(1): p. 321-335.
58. Poirier, G.E., M.J. Tarlov, and H.E. Rushmeier, 2-dimensional liquid-phase and the px-root-3-phase of alkanethiol self-assembled monolayers on Au(111). Langmuir, 1994. 10(10): p. 3383-3386.
59. Porter, M.D., et al., Spontaneously organized molecular assemblies .4. structural characterization of normal-alkyl thiol monolayers on gold by optical ellipsometry, infrared-spectroscopy, and electrochemistry. Journal of the American Chemical Society, 1987. 109(12): p. 3559-3568.
60. Riepl, M., et al., Optimization of capacitive affinity sensors: drift suppression and signal amplification. Analytica Chimica Acta, 1999. 392(1): p. 77-84.
61. Boubour, E. and R.B. Lennox, Insulating properties of self-assembled monolayers monitored by impedance spectroscopy. Langmuir, 2000. 16(9): p. 4222-4228.
62. Helmholtz, H.v., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen Versuche. Annalen der Physik, 1853. 165(6): p. 211-233.
63. Helmholtz, H.V., Studien über electrische Grenzschichten. Annalen der Physik, 1879. 243(7): p. 337-382.
64. Gouy, G., Constitution of the electric charge at the surface of an electrolyte. J. phys, 1910. 9(4): p. 457-467.
65. Stern, O., Zur theorie der elektrolytischen doppelschicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 1924. 30(21‐22): p. 508-516.
66. Grahame, D.C., The electrical double layer and the theory of electrocapillarity. Chemical reviews, 1947. 41(3): p. 441-501.
67. Ritchie, I., S. Bailey, and R. Woods, The metal–solution interface. Advances in Colloid and Interface Science, 1999. 80(3): p. 183-231.
68. Kelvin, L., V. Contact electricity of metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1898. 46(278): p. 82-120.
69. Melitz, W., et al., Kelvin probe force microscopy and its application. Surface Science Reports, 2011. 66(1): p. 1-27.
70. Bhushan, B. and O. Marti, Scanning probe microscopy–principle of operation, instrumentation, and probes. 2010: Springer.
71. Nonnenmacher, M., M. o’Boyle, and H. Wickramasinghe, Kelvin probe force microscopy. Applied Physics Letters, 1991. 58(25): p. 2921-2923.
72. Schwer, C. and E. Kenndler, Electrophoresis in fused-silica capillaries: the influence of organic solvents on the electroosmotic velocity and the. zeta. potential. Analytical Chemistry, 1991. 63(17): p. 1801-1807.
73. Renneberg, R., et al., Impedance Spectroscopy and Biosensing, in Biosensing for the 21st Century. 2008, Springer Berlin / Heidelberg. p. 195-237.
74. Rubinson, J.F. and Y.P. Kayinamura, Charge transport in conducting polymers: insights from impedance spectroscopy. Chemical Society Reviews, 2009. 38(12): p. 3339-3347.
75. Hong, J., et al., AC frequency characteristics of coplanar impedance sensors as design parameters. Lab on a Chip, 2005. 5(3): p. 270-279.
76. Christenson, R.H., et al., Cardiac troponin T and cardiac troponin I: relative values in short-term risk stratification of patients with acute coronary syndromes. Clinical chemistry, 1998. 44(3): p. 494-501.
77. Braunwald, E., Biomarkers in heart failure. New England Journal of Medicine, 2008. 358(20): p. 2148-2159.
78. welfare, M.o.h.a. 103年國人死因統計結果. 2014 [cited 2015; Available from: http://www.mohw.gov.tw/news/531349778.
79. organization, w.h. The top 10 causes of death. 2012; Available from: http://www.who.int/mediacentre/factsheets/fs310/en/.
80. Morrow, D.A., et al., National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Clinical chemistry, 2007. 53(4): p. 552-574.
81. Braunwald, E., et al., ACC/AHA 2002 guideline update for the management of patients with unstable angina and non–ST-segment elevation myocardial infarction—summary article: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on the Management of Patients With Unstable Angina). Journal of the American College of Cardiology, 2002. 40(7): p. 1366-1374.
82. Reth, M., Matching cellular dimensions with molecular sizes. Nature immunology, 2013. 14(8): p. 765-767.
83. Ido, S., et al., Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy. Nature materials, 2014. 13(3): p. 264-270.
84. Itoh, Y., et al., Simple formation of C60 and C60-ferrocene conjugated monolayers anchored onto silicon oxide with five carboxylic acids and their transistor applications. Chemistry of Materials, 2011. 23(4): p. 970-975.
85. Van Gerwen, P., et al., Nanoscaled interdigitated electrode arrays for biochemical sensors. Sensors and Actuators B: Chemical, 1998. 49(1): p. 73-80.
86. Gavish, N. and K. Promislow, Dependence of the dielectric constant of electrolyte solutions on ionic concentration. arXiv preprint arXiv:1208.5169, 2012.
87. Salmio, H. and D. Brühwiler, Distribution of amino groups on a mesoporous silica surface after submonolayer deposition of aminopropylsilanes from an anhydrous liquid phase. The Journal of Physical Chemistry C, 2007. 111(2): p. 923-929.
88. Midmore, B. and R. Hunter, The effect of electrolyte concentration and co-ion type on the ζ-potential of polystyrene latices. Journal of colloid and interface science, 1988. 122(2): p. 521-529.
89. Singh, K.V., et al., 3D nanogap interdigitated electrode array biosensors. Analytical and bioanalytical chemistry, 2010. 397(4): p. 1493-1502.
90. Hatsuki, R., F. Yujiro, and T. Yamamoto, Direct measurement of electric double layer in a nanochannel by electrical impedance spectroscopy. Microfluidics and nanofluidics, 2013. 14(6): p. 983-988.
91. Macdonald, J.R. and E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications. History, 2005. 1: p. 8.
92. Yuan, H., et al., Electrostatic and electrochemical nature of liquid-gated electric-double-layer transistors based on oxide semiconductors. Journal of the American Chemical Society, 2010. 132(51): p. 18402-18407.
93. Laureyn, W., et al., Nanoscaled interdigitated titanium electrodes for impedimetric biosensing. Sensors and Actuators B: Chemical, 2000. 68(1): p. 360-370.
94. Huang, K.-D. and R.-J. Yang, Electrokinetic behaviour of overlapped electric double layers in nanofluidic channels. Nanotechnology, 2007. 18(11): p. 115701.
95. Qu, W. and D. Li, A model for overlapped EDL fields. Journal of Colloid and Interface Science, 2000. 224(2): p. 397-407.
96. So, C.R., C. Tamerler, and M. Sarikaya, Adsorption, Diffusion, and Self‐Assembly of an Engineered Gold‐Binding Peptide on Au (111) Investigated by Atomic Force Microscopy. Angewandte Chemie International Edition, 2009. 48(28): p. 5174-5177.
97. Hennessey, H., et al., Electrochemical investigations of the interaction of C-reactive protein (CRP) with a CRP antibody chemically immobilized on a gold surface. Analytica chimica acta, 2009. 643(1): p. 45-53.
98. Nanjundiah, C., S. McDevitt, and V. Koch, Differential Capacitance Measurements in Solvent‐Free Ionic Liquids at Hg and C Interfaces. Journal of The Electrochemical Society, 1997. 144(10): p. 3392-3397.
99. Levi, M., et al., Solid‐State Electrochemical Kinetics of Li‐Ion Intercalation into Li1− x CoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS. Journal of The Electrochemical Society, 1999. 146(4): p. 1279-1289.
100. EDWARD, A. and W. MEIR, The use of the avidin-biotin complex as a tool in molecular biology. Methods of biochemical analysis, 1980. 26: p. 1-45.
101. Stern, E., et al., Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature, 2007. 445(7127): p. 519-522.
102. Haydon, D., The surface charge of cells and some other small particles as indicated by electrophoresis: I. The zeta potential-surface charge relationships. Biochimica et Biophysica Acta, 1961. 50(3): p. 450-457.
103. Hammerer-Lercher, A., et al., High-sensitivity cardiac troponin T compared with standard troponin T testing on emergency department admission: how much does it add in everyday clinical practice? Journal of the American Heart Association, 2013. 2(3): p. e000204.
104. Twerenbold, R., et al., High-sensitive troponin T measurements: what do we gain and what are the challenges? European heart journal, 2012. 33(5): p. 579-586.
105. Shu, J., et al., Cobalt-Porphyrin-Platinum-Functionalized Reduced Graphene Oxide Hybrid Nanostructures: A Novel Peroxidase Mimetic System For Improved Electrochemical Immunoassay. Scientific reports, 2015. 5.
106. Bratov, A., et al., Three-dimensional interdigitated electrode array as a transducer for label-free biosensors. Biosensors and Bioelectronics, 2008. 24(4): p. 729-735.
107. Guimerà, A., et al., Effect of surface conductivity on the sensitivity of interdigitated impedimetric sensors and their design considerations. Sensors and Actuators B: Chemical, 2015. 207: p. 1010-1018.
108. Bäcker, M., et al., Planar and 3D interdigitated electrodes for biosensing applications: The impact of a dielectric barrier on the sensor properties. physica status solidi (a), 2014. 211(6): p. 1357-1363.
109. Bratov, A., et al., Three‐Dimensional Interdigitated Electrode Array as a Tool for Surface Reactions Registration. Electroanalysis, 2012. 24(1): p. 69-75.
110. Sheng, J.-J. and J.-P. Jin, Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Frontiers in physiology, 2014. 5.
111. Volanakis, J.E., Human C-reactive protein: expression, structure, and function. Molecular immunology, 2001. 38(2): p. 189-197.
112. Thompson, D., M.B. Pepys, and S.P. Wood, The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure, 1999. 7(2): p. 169-177.
113. Okemefuna, A.I., et al., C-reactive protein exists in an NaCl concentration-dependent pentamer-decamer equilibrium in physiological buffer. Journal of Biological Chemistry, 2010. 285(2): p. 1041-1052.
114. John, G., E. English, and E. Milosevich, In vitro determination of hemoglobin A 1c for diabetes diagnosis and management: technology update. Pathology and Laboratory Medicine International, 2014. 6: p. 21-31.
115. Little, R.R. and W.L. Roberts, A review of variant hemoglobins interfering with hemoglobin A1c measurement. Journal of diabetes science and technology, 2009. 3(3): p. 446-451.
116. abcam, Protocols book. 1st ed.: abcam.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51030-
dc.description.abstract表面電位為固液介面間最重要的性質之一,可藉由外加電壓或者表面改質來作調控。因此,表面電位可作為一良好之指示器來觀察表面性質的變化,例如生物分子接合的現象。因此在本論文中,我們提出了利用共平面電極且電極間隙為奈米尺寸的結構,可用來量測間隙表面電位之變化,作為表面電位變化之指示器,更將此指示器作為生物分子感測元件使用,期能透過此簡單架構的元件以達成重點醫療檢驗之目標。
由於間隙表面電位會影響溶液表面離子的分布,而表面離子的分布亦會決定了電極的電雙層電容組成,因此,我們所提出的架構,即是利用這樣的原理來進行量測。我們利用的電化學阻抗分析以及循環伏安法量測電雙層電容因間隙表面不同化學性修飾所致之變化,並由實驗結果驗證了表面電位以及電雙層電容之間的關係。更由調整間隙寬度的實驗中提出了兩條路徑的等效電路模型來解釋現象。其中一條路徑與傳統路徑一致,此條路徑遠離間隙表面,因此其電路特性並不會受到間隙表面電位之影響。而另一條路徑則貼近表面,因此,此條路徑會受到表面電位所調控。此外,由調整溶液離子強度量測阻抗變化,證實了表面電位會藉由縮短電雙層之厚度而影響電雙層電容。
其次,在驗證了基本機制後,我們將此指示器應用於生物分子量測上。我們在量測環境中含有高濃度(10µg/ml)牛血清蛋白為干擾物的條件下,成功量測到電容隨著心肌鈣蛋白T的濃度的變化,證實了此晶片可做為心肌鈣蛋白T的感測元件用。心肌鈣蛋白T為最重要用來檢測心肌損傷之生物標記物。可檢驗的範圍由10 pg/ml 到 1 µg/ml,最低極限為10 pg/ml,此數值可滿足目前醫學上判斷心肌損傷之標準(35 pg/ml) ,因此其結果提供了此晶片可應用醫學檢驗上之可行性。更由於此晶片之結構簡單,反應迅速,具有可最為重點醫療檢驗晶片之潛力。
最後,我們討論了三個會影響此感測器表現與性質的三個大方向。分別是反應時間、元件結構以及抗原性質三個面向。在反應時間部分,我們藉由提高抗體與抗原之反應時間,證實了可提高反應之感測極限。而在元件結構部分,我們提高的間隙的高度以增加表面電流與電場的分佈比例,證實了3D間隙結構可提高元件之敏感度。在抗原性質部分,我們探討了抗原不同電性、結構、聚集以及大小等特性,皆會影響感測器之表現。儘管結果除了證實蛋白質的複雜性外,我們更從這些複雜性中,找到數個可解釋結果之脈絡,而這些脈絡可在未來做感測器特性之預測提供重要的參考。
zh_TW
dc.description.abstractSurface potential is one of the most important properties at solid-liquid interfaces. It can be modulated by the voltage applied on the electrode or by the surface properties. Hence, surface potential is a good indicator for surface modifications, such as biomolecular bindings. In this dessertation, we proposed to use a planar nano-gap structure to monitor surface-potential difference and biomedical application.
Based on the proposed architecture, the variance of surface-potential difference can be determined by electrical double layer capacitance (EDLC) between the nano-gap electrodes. In this work, we used electrochemical impedance spectroscopy to demonstrate the relationship between surface potential and EDLC by chemically modifying surface properties and by physically tuning the gap width. Then, we proposed two pathway equivalent circuit model to explain the relationship. One pathway is away from the surface which is independent of gap surface potential and the other one is near the surface which is dependent of gap surface potential. Further, buffer concentration experiment proved gap surface potential modulated near surface pathway by contracting electrodes debye length.
Next, we showed the proposed planar nano-gap device provide the capability for cardiac-troponin T (cTnT) measurements with co-existed 10 µg/ml BSA interference by using cyclic voltammetry. cTnT is one of the most important biomarker of myocardial necrosis. This detection is by monitoring of surface-potential variation and differs from traditional capacitive biosensors. The detection dynamic range of our device is from 10 pg/ml to 1 µg/ml and the detection limit is less than 10 pg/ml in diluted PBS buffer (0.01X PBS). These results demonstrated the planar nano-gap architecture having ability on clinical examination. Moreover, because of the simplicity and fast response of the proposed mechanism, this device has high potential on point-of-care test application.
Final part is optimization of the proposed mechanism on bio-detection. We discuss three categories of variables that modulate sensing characteristics. They are response time, electrode structure and antigen features. In response time, we modulated the incubation time of antigen and antibody and showed improvement detection limit. In electrode structure part, we raised the height of gap and the experiment results demonstrated the improvement of sensitivity. In antigen feature part, we compare different charges, sizes and structure of antigen such as catenin, CRP and Hb. Though, the result demonstrates the complexity of protein, there are still some tendency in these features.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:24:06Z (GMT). No. of bitstreams: 1
ntu-105-F98945017-1.pdf: 6730027 bytes, checksum: 04f82c59f8679cc7b93be8e288284115 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
ABSTRACT v
目錄 vii
圖目錄 ix
表目錄 xi
第一章 導論 1
1.1 研究背景 1
1.2 生物感測器介紹與發展 5
1.3 電容性生物感測器介紹 7
1.4 研究動機 9
1.5 論文架構 9
第二章 實驗架構與原理 11
2.1 電化學基本原理 11
2.1.1 氧化還原反應 11
2.1.2 法拉第程序與非法拉第程序 12
2.2 電雙層成因與結構 13
2.2.1 德拜長度 16
2.3 表面電位量測 17
2.3.1 開爾文探針顯微鏡 17
2.3.2 電滲流效應 18
2.4 電化學量測方式 19
2.4.1 循環伏安法 19
2.5 電化學阻抗分析 21
2.6 心肌鈣蛋白 24
第三章 實驗系統架設與量測方法 26
3.1 元件製成步驟 26
3.2 固定化方式 27
3.2.1 交聯劑(Crosslinker)固定化 27
3.2.2 抗體固定化步驟 28
3.3 抗原實驗步驟 28
3.4 量測方法 29
3.4.1 阻抗量測方法 29
3.4.2 循環伏安量測方法 29
3.5 驗證方法 30
3.5.1 倒立式螢光顯微鏡 30
3.5.2 原子力顯微鏡 31
第四章 實驗結果分析與討論 32
4.1 共平面及奈米間隙電極之元件特性 32
4.1.1 阻抗量測 32
4.1.2 等效電路模型 38
4.1.3 電極側壁德拜長度縮減效應 40
4.2 表面電位變化感測 43
4.2.1 元件穩定度測試 43
4.3 官能基置換實驗結果 45
4.4 生物分子感測器之應用 49
4.4.1 生物活性測試 49
4.4.2 抗體固定化位置驗證 51
4.4.3 選擇性與專一性 54
4.4.4 二維電泳 56
4.4.5 不同電極間隙之敏感度比較 57
4.5 元件最佳化與參數比較 59
4.5.1 反應時間 59
4.5.2 3D間隙 62
4.5.3 蛋白質特性 67
4.5.4 總結 75
第五章 結論與未來展望 77
參考文獻 79
1.1 螢光顯微鏡 86
1.2 交聯劑(Crosslinker)固定化步驟 87
1.3 抗體固定化步驟 88
1.4 量測步驟 88
dc.language.isozh-TW
dc.title利用奈米間隙之共平面電極探討表面電位與電雙層電容之關聯並作為生物感測器之應用zh_TW
dc.titleAn Incremental Double-Layer Capacitance of A Planar Nano Gap and Its Application in Biosensorsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee林啟萬,楊裕雄,林淑萍,孫嘉良,許聿翔
dc.subject.keyword電雙層電容,循環伏安法,生物感測器,奈米間隙,共平面電極,德拜長度,zh_TW
dc.subject.keywordElectric double layer capacitance,Cyclic voltammetry,Biosensor,Nano-gap,Coplanar electrode,debye length,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201600421
dc.rights.note有償授權
dc.date.accepted2016-06-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
6.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved