Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51010
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江昭皚(Joe-Air Jiang)
dc.contributor.authorPing-Liang Chungen
dc.contributor.author鍾秉良zh_TW
dc.date.accessioned2021-06-15T13:23:50Z-
dc.date.available2022-08-31
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citation工研院,產業科技國際策略發展所。2018。儲能電池產品技術趨勢與台灣產業機會。台北: 工業技術研究院。網址:https://www.greentrade.org.tw/zh-hant/publication/%e7%b6%a0%e8%89%b2%e7%94%a2%e6%a5%ad%e5%a0%b1%e5%91%8a/2018%e5%84%b2%e8%83%bd%e9%9b%bb%e6%b1%a0%e7%94%a2%e5%93%81%e6%8a%80%e8%a1%93%e8%b6%a8%e5%8b%a2%e8%88%87%e8%87%ba%e7%81%a3%e7%94%a2%e6%a5%ad%e6%a9%9f%e6%9c%83。上網日期:2020-01-04。
台灣電力公司。2019。再生能源發電概況。網址:https://www.taipower.com.tw/tc/page.aspx?mid=204 cid=1582 cchk=5b8ce619-7ff5-40e9-9032-bdfd93d197d9。 上網日期:2020-06-20。
經濟部能源局。2020。再生能源裝(設)置容量(歷年)。能源統計月報。
Abdulkarim A., Abdelkader S. M., Morrow D. J., Amuda S. A. Y., Madugu I. S., Falade A. J., Saminu S., and Adediran Y. A. 2018. Effects of PV and Battery Storage Technologies on the Optimal Sizing of Renewable Energy Microgrid. ELEKTRIKA- Journal of Electrical Engineering. 17(1):1-8.
Ahmed M., Kang Y. C., and Kim Y. C. 2015. Communication Network Architectures for Smart-House with Renewable Energy Resources. Energies. 8(8): 8716-8735.
Al Badwawi R., Issa W. R., Mallick T. K., and Abusara M. 2019. Supervisory Control for Power Management of an Islanded AC Microgrid Using a Frequency Signalling-Based Fuzzy Logic Controller. IEEE Transactions on Sustainable Energy. 10(1): 94-104.
Al-Sakkaf, S., Kassas M., Khalid M., and Abido M. 2019. An Energy Management System for Residential Autonomous DC Microgrid Using Optimized Fuzzy Logic Controller Considering Economic Dispatch. Energies, 12(8):1457.
Alzahrani A., Shamsi P., Dagli C., and Ferdowsi M. 2017. Solar Irradiance Forecasting Using Deep Neural Networks. ScienceDirect. 144: 304-313.
Arcos-Aviles D., Gispert F. G., Pascual J., and Marroyo L. 2019. A Review of Fuzzy-Based Residential Grid-Connected Microgrid Energy Management Strategies for Grid Power Profile Smoothing. In “Energy Sustainability in Built and Urban Environments”. ed. Emilia Motoasca et al., 165-199.
Bellini A., Bifaretti S., Iacovone V., and Cornaro C. 2009. Simplified model of a photovoltaic module. In “Simplified model of a photovoltaic module 2009”. 47-51. Pilsen, Czech Republic: IEEE.
Chung J., Gulcehre C., Cho K. H., and Bengio Y. 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. Available at: https://arxiv.org/abs/1412.3555. Accessed 13 January 2020.
Forsyth P., Maguire T., and Kuffel R. 2004. Real time digital simulation for control and protection system testing. In “2004 IEEE 35th Annual Power Electronics Specialists Conference“. 329-335. Aachen, Germany: IEEE.
Graditi G., Ippolito M. G., Telaretti E., and Zizzo G. 2016. Technical and economical assessment of distributed electrochemical storages for load shifting applications: An Italian case study. Renewable and Sustainable Energy Reviews. 57: 515-523.
Hamidi, M., Bouattane, O., and Raihani, A. 2020. Microgrid Energy Management System: Technologies and Architectures Review. In “2020 IEEE International conference of Moroccan Geomatics”. 1-6. Casablanca, Morocco: IEEE.
Han J., Solanki S. K., and Solanki J. 2013. Coordinated prediction control of a Wind/Battery microgrid system. IEEE Journal of Emerging and Selected Topics in Power Electronics. 1(4): 296-305.
Hochreiter S. and Schmidhuber J. 1997. Long Short-term Memory. Neural Computation. 9(8): 1735-1780.
Justo J. J., Mwasilu F., Lee J., and Jung J. W. 2013. AC-Microgrids versus DC-Microgrids with Distributed Energy Resources: A Review. Renewable and Sustainable Energy Reviews. 24:387-405.
Kaur A., Kaushal J., and Basak P. 2016. A Review on Microgrid Central Controller. Renewable and Sustainable Energy Reviews. 55:338-345.
Kosta A., Pappas N., and Angelakis V. 2017. Age of Information: A New Concept, Metric, and Tool. Foundations and Trends® in Networking. 12(3): 162-259.
Kousksou T., Bruel P., Jamil A., El Rhafiki T., and Y. Zeraouli. 2014. Energy storage: Applications and challenges. Solar Energy Materials and Solar Cells. 120: 59-80.
Kowalczyk A., Włodarczyk A., and Tarnawski J. 2016. Microgrid energy management system. In “2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR)”. 157-162, Miedzyzdroje, Poland: IEEE.
Kuffel R., Giesbrecht J., Maguire T., Wierckx R. P., and McLaren P. 1995. RTDS-a fully digital power system simulator operating in real time. In “1995 International Conference on Energy Management and Power Delivery (EMPD)”. 498-503. Singapore: IEEE
Kuo P. H. and Huang C. J. 2018. A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model. Energies. 11(4): 819.
Li J., Xiong R., Yang Q., Liang F., Zhang M., and Yuan W.. 2017. Design/test of a hybrid energy storage system for primary frequency control using a dynamic droop method in an isolated microgrid power system. Applied Energy. 201: 257-269.
Liu F., Liu J., Zhang H., and Xue D. 2014. Stability issues of Z + Z type cascade system in hybrid energy storage system (HESS). IEEE Transactions on Power Electronics. 29(11): 5846-5859.
Luna A. C., Diaz N. L., Graells M., Vasquez J. C., and Guerrero J. M. 2017. Mixed-Integer-Linear-Programming-Based Energy Management System for Hybrid PV-Wind-Battery Microgrids: Modeling, Design, and Experimental Verification. IEEE Transactions on Power Electronics. 32(4): 2769-2783.
Luo X., Wang J., Dooner M., and Clarke J. 2015. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy. 137: 511-536.
Mansiri K., Sukchai S., and Sirisamphanwong C. 2018. Fuzzy Control Algorithm for Battery Storage and Demand Side Power Management for Economic Operation of the Smart Grid System at Naresuan University, Thailand. IEEE Access. 6: 32440-32449.
Muhammad A., Lee J. M., Hong S. W., Lee S. J., and Lee E. H. 2019. Deep Learning Application in Power System with a Case Study on Solar Irradiation Forecasting. In “2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)”. 275-279. Okinawa, Japan: IEEE.
Olatomiwa L., Mekhilef S., Ismail M. S., and Moghavvemi M. 2016. Energy Management Strategies in Hybrid Renewable Energy Systems: A Review. Renewable and Sustainable Energy Reviews, 62:821-835.
Palizban O. and Kauhaniemi K. 2016. Energy storage systems in modern grids—Matrix of technologies and applications. Journal of Energy Storage. 6: 248-259.
Park M. and Yu I.-K. 2004. A novel real-time simulation technique of photovoltaic generation systems using RTDS. IEEE Transactions on Energy Conversion. 19(1): 164-169.
Planas E., Andreu J., Gárate J. I., Alegría I. M., and Ibarra E. 2015. AC and DC Technology in Microgrids: A Review. Renewable and Sustainable Energy Reviews. 43:726-749.
Qian H., Zhang J., Lai J.-S., and Yu W. 2011. Ahigh-efficiency grid-tie battery energy storage system. IEEE Transactions on Power Electronics. 26(3): 886-896.
REN21. 2019. What are the current trends in renewable energy. Available at: https://www.ren21.net/what-are-the-current-trends-in-renewable-energy/. Accessed 26 January 2020.
Sera D., Teodorescu R., and Rodriguez P. 2007. PV panel model based on datasheet values. In “ 2007 IEEE International Symposium on Industrial Electronics”. 2392-2396. Vigo, Spain: IEEE.
Tan X., Li Q., and Wang H. 2013. Advances and trends of energy storage technology in microgrid. International Journal of Electrical Power Energy Systems. 44(1): 179-191.
Teo T. T., Logenthiran T., Woo W. L., and Abidi K. 2018. Advanced control strategy for an energy storage system in a grid-connected microgrid with renewable energy generation. IET Smart Grid. 1(3): 96-103.
Vinod., Kumar R., and Singh S. K. 2018. Solar photovoltaic modeling and simulation: As a renewable energy solution. Energy Reports. 4: 701-712.
Voyant C., Notton G., Kalogirou S., and Nivet M. L. 2017. Machine learning methods for solar radiation forecasting: A review. Renewable Energy. 105: 569-582.
Wang P., Xiao J., and Setyawan L. 2015. Hierarchical control of hybrid energy storage system in DC microgrids. IEEE Transactions on Industrial Electronics. 62(8): 4915-4924.
Wang Y., Shen Y., Mao S., Cao G., and Nelms R. M. 2018.Adaptive Learning Hybrid Model for Solar Intensity Forecasting. IEEE Transactions on Industrial Informatics. 14(4): 1635-1645.
Xiang Y., Liu J., and Liu Y. 2016. Robust Energy Management of Microgrid With Uncertain Renewable Generation and Load. IEEE Transactions on Smart Grid. 7(2): 1034-1043.
Yu Y., Cao J., and Zhu J. 2019.An LSTM Short-Term Solar Irradiance Forecasting Under Complicated Weather Conditions. IEEE Access. 7: 145651-145666.
Zhao P., Suryanarayanan S., and Simoes M. G. 2013. An Energy Management System for Building Structures Using a Multi-Agent Decision-Making Control Methodology. IEEE Transactions on Industry Applications, 49(1): 322-330.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51010-
dc.description.abstract近年來民眾環保意識上漲,因此再生能源的相關議題也逐漸浮上檯面,各國政府也極力推展再生能源發展計畫,但其功率輸出受到一天中的時間與氣候條件限制,造成供電間歇性的問題,而這項特性對電力行業提出了巨大的挑戰,因為它們必須維持電力的供應與需求平衡關係,以確保電力系統的穩定性和可靠性,而目前的主流解決方案有兩種,即是精確的再生能源發電預測與併入儲能系統平衡電網功率波動。因此本研究提出了一個基於短期太陽能輻照度預測的儲能系統控制決策,而該策略分為兩個部分,首先本研究提出了三種不同的預測模型比較,分別為Feedforward Neural Networks (FFNN)、Long Short-Term Memory (LSTM) 與 Gated Recurrent Unit (GRU),並將資料集分為5分鐘與10分鐘間隔,用以訓練兩種不同間隔的預測模型,該模型以過去30分鐘的特徵資料做為訓練模型輸入,最後再將性能表現最好的兩種預測模型進行混合權重搭配,提出一個15分鐘的預測模型,並將其預測結果搭配第二階段基於模糊邏輯的儲能系統控制策略,其考慮了儲能系統的充電狀態、微電網的淨功率以及未來輻照度的變化,且策略的主要目標為減少再生能源發電所造成的不穩定性影響,並最大程度地降低與主電網間的功率波動,進而提高光伏系統發電的利用效率,並同時降低運營成本,更重要的是所有的決策控制皆維持在儲能系統之安全充電範圍內,所提出的策略將在實時數位模擬器進行實際模擬驗證以評估其效能與可靠性。zh_TW
dc.description.abstractThis study proposes a fuzzy logic control strategy (FLCS) for an energy storage system (ESS) based on short-term irradiance prediction. The power output of photovoltaic (PV) systems is intermittent, which posts a great challenge to electric power industries, because they have to balance the energy supply and demand to ensure the stability and reliability of a power system. The control strategy is divided into two parts. First, a solar irradiance prediction model is proposed based on FFNN, LSTM, and GRU models, which uses PV model parameters and features of satellite cloud images as the model inputs. The important features of satellite cloud images are selected by the Principal Component Analysis, and the filtered features are used to train the prediction model. Finally, the best prediction model is used to combine with the FLCS which takes a number of factors into consideration, including the state of charge of the ESS, the microgrid net power, and the change of the future irradiance. The goals of the control strategy are to reduce the impact of instability on renewable energy (RE) generation and minimize the grid power profile fluctuations. Finally, irradiance data are simulated by Real Time Digital Simulator (RTDS) to evaluate which control strategies can yield best performance. The results show that the proposed FLCS can control the ESS to balance the power of the grid no matter in the case of sunny and cloudy days, and more importantly, all decisions are maintained within a safe SOC range.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:23:50Z (GMT). No. of bitstreams: 1
U0001-1008202016372100.pdf: 12620120 bytes, checksum: 270230074d9f3f2e0fea791c1eb5c7a0 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 2
摘要 4
Abstract 5
Table of Contents 7
List of Figures 10
List of Tables 18
Chapter 1 Introduction 20
1.1 Background 20
1.2 Motivation and propose 22
1.3 Thesis organization 26
Chapter 2 Literature Review 28
2.1 Microgrid 28
2.2 Solar photovoltaic system 30
2.3 Solar irradiance prediction 35
2.4 Energy storage system 39
2.5 The control strategery for ESS 43
2.6 Real-time digital simulator 45
Chapter 3 Materials and Methods 48
3.1 Experimental framework 48
3.2 Experimental field 50
3.3 Experimental materials and equipment 54
3.3.1 Pyranometer 55
3.3.2 Resistance thermometer 56
3.3.3 Real time digital power system simulator 57
3.4 Feature extraction for the satellite cloud images 58
3.4.1 The process of feature extraction for the satellite cloud images 58
3.4.2 The Format of satellite cloud images 60
3.4.3 Attributes of the satellite cloud images 61
3.5 Principal component analysis 66
3.6 Solar irradiance prediction 68
3.6.1 Framework of an irradiance prediction model 68
3.6.2 Establishment of single timestamp prediction model 73
3.6.3 K-fold cross validation 75
3.6.4 FFNN irradiance model 77
3.6.5 LSTM irradiance model 80
3.6.6 GRU irradiance model 83
3.6.7 Criteria for evaluation 86
3.7 Fuzzy logic control strategy 87
3.7.1 Control strategy 87
3.7.2 Fuzzy logic design 89
3.8 RTDS simulation and data sources 97
3.8.1 Simulation data sources 99
3.8.2 RTDS simulation process 100
3.8.3 Criteria for evaluation 102
Chapter 4 Results and Discussion 104
4.1 Data preprocessing and Principle Component Analysis 104
4.2 The solar irradiance prediction 106
4.2.1 Data sets 106
4.2.2 Finding the best combinations of optimizer and epoch 108
4.2.3 Finding the best combination of neurons and batch size 117
4.2.4 Single timestamp prediction model performance 124
4.2.5 Multi-timestamp prediction model performance 132
4.3 The hybrid solar irradiance prediction method 145
4.4 The simulated results of RTDS 152
Chapter 5 Conclusions and Future Work 164
5.1 Conclusions 164
5.2 Future work 165
References 168
Appendices 174
dc.language.isoen
dc.title基於短期輻照度預測之智能太陽光電儲能系統控制策略zh_TW
dc.titleAn intelligent control strategy for solar power generation and energy storage systems based on short-term irradiance predictionen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周呈霙(Chen-Ying Chou),王永鐘(Yung-Chung Wang),蕭瑛東(Ying-Tung Hsiao),李建興(Chien-Hsing Lee)
dc.subject.keyword太陽能,儲能系統,衛星雲圖,機器學習,深度學習,輻照度預測,模糊邏輯控制,zh_TW
dc.subject.keywordDeep learning,energy storage systems,fuzzy logic control,machine learning,irradiance prediction,renewable energy source,photovoltaic system,en
dc.relation.page179
dc.identifier.doi10.6342/NTU202002834
dc.rights.note有償授權
dc.date.accepted2020-08-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-1008202016372100.pdf
  目前未授權公開取用
12.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved