Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50986
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王致恬(Chih-Tien Wang)
dc.contributor.authorLam Yan Cheungen
dc.contributor.author張琳欣zh_TW
dc.date.accessioned2021-06-15T13:10:50Z-
dc.date.available2025-08-17
dc.date.copyright2020-09-16
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citationAlexander, G.E. 2004. Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci. 6:259-280.
Armstrong, R.A. 1997. Parkinson's disease and the eye. Ophthalmic and Physiological Optics. 17:S9-S16.
Armstrong, R.A. 2011a. Visual symptoms in Parkinson's disease. Parkinson's disease. 2011:908306.
Armstrong, R.A. 2011b. Visual symptoms in Parkinson's disease. Parkinsons Dis. 2011:908306-908306.
Büttner, T., W. Kuhn, P. Klotz, R. Steinberg, L. Voss, D. Bulgaru, H.J.J.o.N.T.-P.s.D. Przuntek, and D. Section. 1993. Disturbance of colour perception in Parkinson's disease. 6:11-15.
Ballesta, J., G. Terenghi, J. Thibault, and J.M. Polak. 1984. Putative dopamine-containing cells in the retina of seven species demonstrated by tyrosine hydroxylase immunocytochemistry. Neuroscience. 12:1147-1156.
Bengoa-Vergniory, N., R.F. Roberts, R. Wade-Martins, and J. Alegre-Abarrategui. 2017. Alpha-synuclein oligomers: a new hope. Acta neuropathologica. 134:819-838.
Borm, C.D.J.M., K. Smilowska, N.M. de Vries, B.R. Bloem, and T. Theelen. 2019. How I do it: The Neuro-Ophthalmological Assessment in Parkinson's Disease. Journal of Parkinson's disease. 9:427-435.
Braak, H., U. Rüb, W.P. Gai, and K. Del Tredici. 2003a. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. Journal of Neural Transmission. 110:517-536.
Braak, H., K.D. Tredici, U. Rüb, R.A.I. de Vos, E.N.H. Jansen Steur, and E. Braak. 2003b. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 24:197-211.
Chandra, R., A. Hiniker, Y.-M. Kuo, R.L. Nussbaum, and R.A. Liddle. 2017. α-Synuclein in gut endocrine cells and its implications for Parkinson's disease. JCI Insight. 2:e92295.
Chinta, S.J., and J.K. Andersen. 2005. Dopaminergic neurons. The International Journal of Biochemistry Cell Biology. 37:942-946.
Choong, C.-J., and Y.-H. Say. 2011. Neuroprotection of α-synuclein under acute and chronic rotenone and maneb treatment is abolished by its familial Parkinson's disease mutations A30P, A53T and E46K. NeuroToxicology. 32:857-863.
Chung, H.K., H.-A. Ho, D. Pérez-Acuña, and S.-J. Lee. 2019. Modeling α-Synuclein Propagation with Preformed Fibril Injections. JMD. 12:139-151.
Cookson, M.R. 2009a. alpha-Synuclein and neuronal cell death. Molecular neurodegeneration. 4:9-9.
Cookson, M.R.J.M.N. 2009b. α-Synuclein and neuronal cell death. 4:9.
de Lau, L.M.L., P.C.L.M. Giesbergen, M.C. de Rijk, A. Hofman, P.J. Koudstaal, and M.M.B. Breteler. 2004. Incidence of parkinsonism and Parkinson disease in a general population. Neurology. 63:1240.
de Rijk, M.C., C. Tzourio, M.M. Breteler, J.F. Dartigues, L. Amaducci, S. Lopez-Pousa, J.M. Manubens-Bertran, A. Alpérovitch, and W.A. Rocca. 1997. Prevalence of parkinsonism and Parkinson's disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson's disease. J Neurol Neurosurg Psychiatry. 62:10-15.
Devic, I., H. Hwang, J.S. Edgar, K. Izutsu, R. Presland, C. Pan, D.R. Goodlett, Y. Wang, J. Armaly, V. Tumas, C.P. Zabetian, J.B. Leverenz, M. Shi, and J. Zhang. 2011. Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson's disease. Brain. 134:e178-e178.
Diederich, N.J., R. Raman, S. Leurgans, and C.G.J.A.o.n. Goetz. 2002. Progressive worsening of spatial and chromatic processing deficits in Parkinson disease. 59:1249-1252.
Ebrahimi-Fakhari, D., L. Wahlster, and P.J. McLean. 2012. Protein degradation pathways in Parkinson's disease: curse or blessing. Acta neuropathologica. 124:153-172.
Emamzadeh, F.N. 2016. Alpha-synuclein structure, functions, and interactions. J Res Med Sci. 21:29-29.
Feigenbaum, D., M. Lew, S. Janga, M.K. Shah, W. Mack, C. Okamoto, and S. Hamm-Alvarez. 2018. Tear Proteins as Possible Biomarkers for Parkinson’s Disease (S3.006). Neurology. 90:S3.006.
Flagmeier, P., G. Meisl, M. Vendruscolo, T.P.J. Knowles, C.M. Dobson, A.K. Buell, and C. Galvagnion. 2016. Mutations associated with familial Parkinson's disease alter the initiation and amplification steps of α-synuclein aggregation. Proc Natl Acad Sci U S A. 113:10328-10333.
Fujioka, S., K. Ogaki, P.M. Tacik, R.J. Uitti, O.A. Ross, and Z.K. Wszolek. 2014. Update on novel familial forms of Parkinson's disease and multiple system atrophy. Parkinsonism Relat Disord. 20 Suppl 1:S29-S34.
Giasson, B.I., R. Jakes, M. Goedert, J.E. Duda, S. Leight, J.Q. Trojanowski, and V.M. Lee. 2000. A panel of epitope-specific antibodies detects protein domains distributed throughout human alpha-synuclein in Lewy bodies of Parkinson's disease. J Neurosci Res. 59:528-533.
Goodwin, J.S., G.A. Larson, J. Swant, N. Sen, J.A. Javitch, N.R. Zahniser, L.J. De Felice, and H. Khoshbouei. 2009. Amphetamine and methamphetamine differentially affect dopamine transporters in vitro and in vivo. The Journal of biological chemistry. 284:2978-2989.
Greenbaum, E.A., C.L. Graves, A.J. Mishizen-Eberz, M.A. Lupoli, D.R. Lynch, S.W. Englander, P.H. Axelsen, and B.I. Giasson. 2005. The E46K Mutation in α-Synuclein Increases Amyloid Fibril Formation. Journal of Biological Chemistry. 280:7800-7807.
Hansen, C., T. Björklund, G.H. Petit, M. Lundblad, R.P. Murmu, P. Brundin, and J.-Y. Li. 2013. A novel α-synuclein-GFP mouse model displays progressive motor impairment, olfactory dysfunction and accumulation of α-synuclein-GFP. Neurobiology of Disease. 56:145-155.
Hashimoto, M., and E. Masliah. 1999. Alpha-synuclein in Lewy Body Disease and Alzheimer's Disease. Brain Pathology. 9:707-720.
Ingelsson, M. 2016. Alpha-Synuclein Oligomers—Neurotoxic Molecules in Parkinson's Disease and Other Lewy Body Disorders. 10.
Jones, R.D., and I.M. Donaldson. 1995. Fractionation of visuoperceptual dysfunction in Parkinson's disease. Journal of the Neurological Sciences. 131:43-50.
Jones, R.D., I.M. Donaldson, and P.L. Timmings. 1992. Impairment of high-contrast visual acuity in Parkinson's disease. Movement Disorders. 7:232-238.
Kang, W., W. Chen, Q. Yang, L. Zhang, L. Zhang, X. Wang, F. Dong, Y. Zhao, S. Chen, T.J. Quinn, J. Zhang, S. Chen, and J. Liu. 2016. Salivary total α-synuclein, oligomeric α-synuclein and SNCA variants in Parkinson's disease patients. Scientific reports. 6:28143-28143.
Karampetsou, M., M.T. Ardah, M. Semitekolou, A. Polissidis, M. Samiotaki, M. Kalomoiri, N. Majbour, G. Xanthou, O.M.A. El-Agnaf, and K. Vekrellis. 2017. Phosphorylated exogenous alpha-synuclein fibrils exacerbate pathology and induce neuronal dysfunction in mice. Scientific reports. 7:16533.
Karpowicz, R.J., Jr., J.Q. Trojanowski, and V.M.Y. Lee. 2019. Transmission of α-synuclein seeds in neurodegenerative disease: recent developments. Lab Invest. 99:971-981.
Kasuga, K., M. Nishizawa, and T. Ikeuchi. 2012. α-Synuclein as CSF and Blood Biomarker of Dementia with Lewy Bodies. Int J Alzheimers Dis. 2012:437025-437025.
Kim, S., S.H. Kwon, T.I. Kam, N. Panicker, S.S. Karuppagounder, S. Lee, J.H. Lee, W.R. Kim, M. Kook, C.A. Foss, C. Shen, H. Lee, S. Kulkarni, P.J. Pasricha, G. Lee, M.G. Pomper, V.L. Dawson, T.M. Dawson, and H.S. Ko. 2019. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson's Disease. Neuron. 103:627-641.e627.
Li, J., V.N. Uversky, and A.L. Fink. 2001. Effect of Familial Parkinson's Disease Point Mutations A30P and A53T on the Structural Properties, Aggregation, and Fibrillation of Human α-Synuclein. Biochemistry. 40:11604-11613.
Liu, C., C.-W. Zhang, S.Q. Lo, S.T. Ang, K.C.M. Chew, D. Yu, B.H. Chai, B. Tan, F. Tsang, Y.K. Tai, B.W.Q. Tan, M.C. Liang, H.T. Tan, J.Y. Tang, M.K.P. Lai, J.J.E. Chua, M.C.M. Chung, S. Khanna, K.-L. Lim, and T.W. Soong. 2018. S-Nitrosylation of Divalent Metal Transporter 1 Enhances Iron Uptake to Mediate Loss of Dopaminergic Neurons and Motoric Deficit. J Neurosci. 38:8364-8377.
Luk, K.C., V. Kehm, J. Carroll, B. Zhang, P. O'Brien, J.Q. Trojanowski, and V.M.Y. Lee. 2012. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 338:949-953.
Manfredsson, F.P., K.C. Luk, M.J. Benskey, A. Gezer, J. Garcia, N.C. Kuhn, I.M. Sandoval, J.R. Patterson, A. O'Mara, R. Yonkers, and J.H. Kordower. 2018. Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology. Neurobiology of Disease. 112:106-118.
Martin, P.R. 1986. The projection of different retinal ganglion cell classes to the dorsal lateral geniculate nucleus in the hooded rat. Experimental brain research. 62:77-88.
Matsui, H., F. Udaka, A. Tamura, M. Oda, T. Kubori, K. Nishinaka, and M. Kameyama. 2006. Impaired Visual Acuity as a Risk Factor for Visual Hallucinations in Parkinson’s Disease. Journal of Geriatric Psychiatry and Neurology. 19:36-40.
Narhi, L., S.J. Wood, S. Steavenson, Y. Jiang, G.M. Wu, D. Anafi, S.A. Kaufman, F. Martin, K. Sitney, P. Denis, J.-C. Louis, J. Wypych, A.L. Biere, and M. Citron. 1999. Both Familial Parkinson’s Disease Mutations Accelerate α-Synuclein Aggregation. Journal of Biological Chemistry. 274:9843-9846.
Nemani, V.M., W. Lu, V. Berge, K. Nakamura, B. Onoa, M.K. Lee, F.A. Chaudhry, R.A. Nicoll, and R.H. Edwards. 2010. Increased Expression of α-Synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering after Endocytosis. Neuron. 65:66-79.
Oueslati, A. 2016. Implication of Alpha-Synuclein Phosphorylation at S129 in Synucleinopathies: What Have We Learned in the Last Decade? Journal of Parkinson's disease. 6:39-51.
Parkkinen, L., S.S. O'Sullivan, C. Collins, A. Petrie, J.L. Holton, T. Revesz, and A.J. Lees. 2011. Disentangling the relationship between lewy bodies and nigral neuronal loss in Parkinson's disease. Journal of Parkinson's disease. 1:277-286.
Pierce, R.C., and P.W. Kalivas. 1995. Amphetamine produces sensitized increases in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine. Journal of Pharmacology and Experimental Therapeutics. 275:1019.
Repka, M.X., M.C. Claro, D.N. Loupe, and S.G. Reich. 1996. Ocular motility in Parkinson's disease. J Pediatr Ophthalmol Strabismus. 33:144-147.
Rodriguez, J.A., M.I. Ivanova, M.R. Sawaya, D. Cascio, F.E. Reyes, D. Shi, S. Sangwan, E.L. Guenther, L.M. Johnson, M. Zhang, L. Jiang, M.A. Arbing, B.L. Nannenga, J. Hattne, J. Whitelegge, A.S. Brewster, M. Messerschmidt, S. Boutet, N.K. Sauter, T. Gonen, and D.S. Eisenberg. 2015. Structure of the toxic core of α-synuclein from invisible crystals. Nature. 525:486-490.
Román Rosón, M., Y. Bauer, A.H. Kotkat, P. Berens, T. Euler, and L. Busse. 2019. Mouse dLGN Receives Functional Input from a Diverse Population of Retinal Ganglion Cells with Limited Convergence. Neuron. 102:462-476.e468.
Rossi, M., M. Merello, and S. Perez-Lloret. 2014. Management of constipation in Parkinson’s disease. Expert opinion on pharmacotherapy. 16:1-11.
Schapira, A.H.V., K.R. Chaudhuri, and P. Jenner. 2017. Non-motor features of Parkinson disease. Nature reviews. Neuroscience. 18:435-450.
Shimozawa, A., M. Ono, D. Takahara, A. Tarutani, S. Imura, M. Masuda-Suzukake, M. Higuchi, K. Yanai, S.-I. Hisanaga, and M. Hasegawa. 2017. Propagation of pathological α-synuclein in marmoset brain. Acta neuropathologica communications. 5:12-12.
Siddiqui, I.J., N. Pervaiz, and A.A. Abbasi. 2016. The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication. Sci Rep. 6:24475-24475.
Singh, S.K., A. Dutta, and G. Modi. 2017. α-Synuclein aggregation modulation: an emerging approach for the treatment of Parkinson's disease. Future Med Chem. 9:1039-1053.
Smith, A.D., and J.P. Bolam. 1990. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends in neurosciences. 13:259-265.
Sonne, J., and M.R. Beato. 2020. Neuroanatomy, Substantia Nigra. In StatPearls, Treasure Island (FL).
Stefanis, L. 2012. α-Synuclein in Parkinson's disease. Cold Spring Harbor perspectives in medicine. 2:a009399-a009399.
Tarakad, A., and J. Jankovic. 2017. Anosmia and Ageusia in Parkinson's Disease. International review of neurobiology. 133:541-556.
Uemura, N., H. Yagi, M.T. Uemura, Y. Hatanaka, H. Yamakado, and R. Takahashi. 2018. Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Molecular Neurodegeneration. 13:21.
Volpicelli-Daley, L.A., K.C. Luk, T.P. Patel, S.A. Tanik, D.M. Riddle, A. Stieber, D.F. Meaney, J.Q. Trojanowski, and V.M.Y. Lee. 2011. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 72:57-71.
Whittaker, H.T., Y. Qui, C. Bettencourt, and H. Houlden. 2017. Multiple system atrophy: genetic risks and alpha-synuclein mutations. F1000Res. 6:2072-2072.
Witkovsky, P. 2004. Dopamine and retinal function. Documenta ophthalmologica. Advances in ophthalmology. 108:17-40.
Wu, T., M. Hallett, and P. Chan. 2015. Motor automaticity in Parkinson's disease. Neurobiology of disease. 82:226-234.
Yan, F., Y. Chen, M. Li, Y. Wang, W. Zhang, X. Chen, and Q. Ye. 2018. Gastrointestinal nervous system α-synuclein as a potential biomarker of Parkinson disease. Medicine. 97:e11337-e11337.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50986-
dc.description.abstract帕金森氏病(Parkinson’s disease)是一種影響中樞神經系統的慢性神經退化疾病,主要影響運動神經系統由中腦黑質(Substantia nigra pars compacta)的多巴胺神經元 ( Dopaminergic neurons)變性損失所致。在過去的十年的研究中,便秘被發現是帕金森氏病的常見症狀之一。 2003年,Heiko Braak的研究發現帕金森氏病患者的屍檢樣本中,路易體 (Lewy bodies)同時出現在大腦和胃腸道系統中,顯示帕金森氏病可能起源於腸道而非大腦。然而,目前帕金森氏病進展時程與α-突觸核蛋白(α-synuclein)的傳播之間的因果關係尚未明朗。因此,本論文探討人類致病性α-突觸核蛋白突變體是否可能在成年期帕金森氏病的大鼠模型中,依不同時程,從黑質傳播到其他神經組織或周圍器官。實驗方式為,將雄性Sprague-Dawley大鼠(〜250 g,2週齡)深度麻醉以進行立體定位手術,顯微注射2 μL含有三重突變的質體DNA(5 μg/μL)溶液到黑質中,以遞送人類致病性α-突觸核蛋白突變體的基因。使用自製鉑電極進行活體電穿孔,條件為五次電脈衝,每次持續時間為50毫秒,間隔為950毫秒,電場強度為133 V / cm。活體電穿孔後,通過免疫螢光染色和西方墨點法 (Western Blot) 分析大鼠中α-突觸核蛋白的聚集(aggregation)和多巴胺神經元的流失。結果顯示,轉染三重突變株後一至三個月,以免疫螢光染色標誌α-突觸核蛋白第129個胺基酸Serine的磷酸化 (pS129) (以pS129免疫反應性作為α-突觸核蛋白聚集體的標誌),確認成年期帕金森氏病的大鼠模型中有α-突觸核蛋白聚集體;轉染三重突變株後三個月,黑質多巴胺神經元有明顯酵素流失並且α-突觸核蛋白聚集可出現在離黑質較遠的大腦區域,包括:紋狀體、嗅球、視丘、視神經、和視網膜,顯示腦中α-突觸核蛋白具有在神經系統內傳播的能力。最後,通過西方墨點法分析腸道和附睾脂肪的組織,發現轉染三重突變株後一至三個月之後,腸道也疑似呈現出pS129免疫反應性。這些結果表明,人類致病性α-突觸核蛋白突變體可以在成年期帕金森氏病的大鼠模型中,從黑質傳播到中樞神經系統及其他周圍器官。zh_TW
dc.description.abstractParkinson's disease (PD) is the second most common movement disorder, owing to degenerative loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc) of midbrain. Moreover, in the past decade, constipation has been found as one of the most common symptoms of PD. In 2003, Heiko Braak proposed that PD may originate in the gut rather than the brain, as evidenced by that Lewy bodies appeared in both brain and the gastrointestinal (GI) system in post-mortem samples of PD patients. However, it remains unclear what is the causal relationship between PD progression and the propagation of α-synuclein (α-Syn) aggregates (the main component of Lewy bodies) in the central and peripheral system. In our study, we examined whether the human pathogenic α-Syn mutant may propagate from the SNc to other neural tissues or peripheral organs in a rat model mimicking sporadic PD during adulthood. In this PD model, male Sprague-Dawley rats (~250 g, 2-week-old) were deeply anesthetized for stereotaxic surgery. The 2 μL-solution containing DNA plasmids (5 μg/μL) was microinjected into SNc to deliver genes expressing the human pathogenic α-Syn mutant. Five electric pulses were delivered by homemade platinum electrodes via ear bars, with duration of 50 msec, intervals of 950 msec, and electric field strength of 133 V/cm. After in vivo electroporation, the aggregation of α-Syn and DA neuronal dysfunction in the PD rats were examined by immunostaining and western analysis. First, the presence of α-Syn aggregates in the SNc were verified in the PD rats, by immunostaining the phosphorylated Ser129 (pS129) of α-Syn (the pS129 immunoreactivity as the hallmark of α-Syn aggregates). The results showed that DA neurons may become dysfunction after 3 months post transfection. Further, aggregation of α-Syn in can be found in remote brain regions such as striatum, olfactory bulbs, thalamus, optic nerves, and retinas, suggesting the ability of pathological aggregated α-Syn to propagate within the neural tissues. Finally, by using western analysis, we analyzed that the tissues from the gut and epididymis fat and found that the gut may likely display the pS129 immunoreactivity. These results suggest that the human pathogenic α-Syn mutant can be propagated from the rat midbrain to other neural tissues or to peripheral organs during PD progression.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:10:50Z (GMT). No. of bitstreams: 1
U0001-1008202016525000.pdf: 7919331 bytes, checksum: 58fe6bc6861b4fd1c6e0910dc3ad94b4 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定 I
致謝 II
中文摘要 IV
ABSTRACT VI
ABBREVIATIONS VIII
CONTENTS IX
CHAPTER I-INTRODUCTION 1
1. Parkinson’s disease 1
2. Alpha-Synuclein (αSyn) 3
2.1 Structure and function of αSyn 3
2.2 Mutations in αSyn (A30P, E46K, and A53T) 4
2.3 Aggregation of αSyn 6
2.4 Propagation of α-Syn 7
3. Propagation of α-Syn in the central nervous system. 8
4. The gut-brain axis in PD 10
5. Purpose of study 11
CHAPTER II-MATERIALS AND METHODS 13
2.1 Animals 13
2.2 Plasmid construction and subcloning 13
2.3 Stereotaxic surgery in vivo electroporation 14
2.4 Heart perfusion 16
2.5 Brain fixation 16
2.6 Cryostat section 17
2.7 Immunofluorescence staining 17
2.8 Lysis of samples 19
2.9 Immunoblotting 20
CHAPTER III-RESULTS 22
3.1 The immunoreactivity of rats transfected with hα-Syn-A30P-E46K-A53T indicate a stronger effect than rats transfected with HA and hα-Syn-A53T. 22
3.2 Overexpressing hα-Syn-A30P-E46K-A53T induce the aggregation of α-Syn in the rats after several months post transfection. 23
3.3 Signals of ectopic α-Syn appeared in the caudate putamen (CPu). 24
3.4 The aggregated α-Syn (pS129) may propagate across the olfactory bulbs (OB) after transfected with hα-Syn-A30P-E46K-A53T. 25
3.5 Signals of ectopic α-Syn can be detected with in dorsal lateral geniculate nucleus (dLGN). 26
3.6 The aggregated α-Syn (pS129) can be detected within both optic nerves and eyes. 27
3.7 Ectopic α-Syn and aggregated α-Syn (pS129) can be detected in remote regions of the brain after transfection with hα-Syn-A30P-E46K-A53T. 29
3.8 Ectopic α-Syn and aggregated α-Syn (pS129) could be detected in peripheral organs after transfection with hα-Syn-A30P-E46K-A53T. 31
3.9 The timeline of aggregated α-Syn propagation through the CNS and peripheral organs. 32
CHAPTER IV-DISCUSSION 34
4.1 The triple mutant of α-Syn (hα-Syn-A30P-E46K-A53T) showed a strong effect to induce the DA neuron loss in PD rat model. 35
4.2 The immunoreactivity of the rat transfected with hα-Syn-A30P-E46K-A53T suggested the propagation of α-Syn within the CNS. 36
4.3 Non-specific bands were detected in immunoblotting results. 36
4.4 Future directions. 37
CHAPTER V-CONCLUSION 39
REFERENCES 40
Figure 1. Schematic diagram of SNc and Lewy bodies in PD patients. 47
Figure 2. Structure of Alpha-Synuclein (α-Syn) 48
Figure 3. Plasmid DNA construction. 49
Figure 4. Schematic diagrams of Stereotaxic surgery and in vivo electroporation. 50
Figure 5. Schematic flowchart for the experimental protocol. 51
Figure 6. The flowchart of lysis samples 52
Figure 7. Different brain regions of the adult rat. 54
Figure 8. In vivo electroporation successfully allows ectopic iGluSnFR expressed in the rat SNc. 55
Figure 9. The numbers of dopamine neurons within SNc did not significantly decrease after transfection with HA. 58
Figure 10. The numbers of dopamine neurons within both sides of SNc remained unchanged after transfection of hα-Syn-A53T. 60
Figure 11. Overexpressing hα-Syn-A30P-E46K-A53T induced an obvious decrease in TH signals in both sides of SNc. 64
Figure 12. Signals of pSer129 can be barely detected within SNc from the rat transfected with HA. 65
Figure 13. Immunoreactivity of aggregated α-Syn, pSer129 can be detected within SNc from the rat transfected with hα-Syn-A30P-E46K-A53T-HA. 67
Figure 14. Immunoreactivity of ectopic signal α-Syn 211 can be detected within CPu from the rat transfected with hα-Syn-A30P-E46K-A53T but not HA. 69
Figure 15. Immunoreactivity of ectopic signal α-Syn 211 can be detected within contralateral CPu from the rat transfected with hα-Syn-A30P-E46K-A53T. 70
Figure 16. Immunoreactivity of ectopic signal α-Syn 211 can be detected within ipsilateral CPu from the rat transfected with hα-Syn-A30P-E46K-A53T. 71
Fig 17. Immunoreactivity of aggregated α-Syn ps129 can be detected within olfactory bulbs (OB) from the rat transfected with hα-Syn-A30P-E46K-A53T. 73
Figure 18. Immunoreactivity of ectopic α-Syn can be detected within dorsal lateral geniculate nucleus (dLGN) from the rat transfected with α-Syn-A30P-E46K-A53T. 75
Fig 19. Immunoreactivity of aggregated α-Syn pS129 can be detected within optic nerves from the rat transfected with hα-Syn-A30P-E46K-A53T. 78
Figure 20. Immunoreactivity of aggregated α-Syn pS129 can be detected within the eyes from the rat transfected with hα-Syn-A30P-E46K-A53T. 80
Figure 21. Immunoreactivity of aggregated α-Syn pS129 can be detected within the DA neurons of eyes from the rat transfected with hα-Syn-A30P-E46K-A53T. 83
Figure 22. The immunoreactivity showed the specificity of different primary secondary in detecting aggregated α-Syn pS129 and α-Syn 211. 85
Figure 23. Ectopic α-Syn and aggregated α-Syn pS129 can be detected in remote regions of the brain after transfection with hα-Syn-A30P-E46K-A53T. 88
Figure 24. Ectopic α-Syn and aggregated α-Syn pS129 can be detected in peripheral organs after transfection with hα-Syn-A30P-E46K-A53T in the SNc. 92
Figure 25. A timeline of aggregated α-Syn propagation through the CNS and peripheral organs. 94
Table 1. Antibodies for immunofluorescence staining 95
Table 2. Antibodies for western blot 97
Appendix 98
Appendix 1. The abstract and poster of 2019 Annual meeting of the Society for Neuroscience 101
dc.language.isoen
dc.subject活體電穿孔zh_TW
dc.subject帕金森氏症zh_TW
dc.subject帕金森氏症zh_TW
dc.subject成年期帕金森氏病的大鼠模型zh_TW
dc.subject活體電穿孔zh_TW
dc.subject成年期帕金森氏病的大鼠模型zh_TW
dc.subject三重突變α-突觸核蛋白zh_TW
dc.subject三重突變α-突觸核蛋白zh_TW
dc.subjectParkinson’s diseaseen
dc.subjectThe triple mutant of α-Synucleinen
dc.subjectParkinson’s diseaseen
dc.subjectin vivo electroporationen
dc.subjectadult rat PD modelen
dc.subjectThe triple mutant of α-Synucleinen
dc.subjectin vivo electroporationen
dc.subjectadult rat PD modelen
dc.titleα-突觸核蛋白聚集體在中樞神經系統和其他器官中的傳播zh_TW
dc.titleThe propagation of α-synuclein aggregates in the central nervous system and other organsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧主欽(Juu-Chin Lu),徐立中(Li-Chung Hsu),胡孟君(Meng-Chun Hu)
dc.subject.keyword三重突變α-突觸核蛋白,帕金森氏症,活體電穿孔,成年期帕金森氏病的大鼠模型,zh_TW
dc.subject.keywordThe triple mutant of α-Synuclein,Parkinson’s disease,in vivo electroporation,adult rat PD model,en
dc.relation.page101
dc.identifier.doi10.6342/NTU202002838
dc.rights.note有償授權
dc.date.accepted2020-08-12
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
Appears in Collections:分子與細胞生物學研究所

Files in This Item:
File SizeFormat 
U0001-1008202016525000.pdf
  Restricted Access
7.73 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved