請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50962
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳青周(Ching-Chow Chen) | |
dc.contributor.author | Wen-Shu Chen | en |
dc.contributor.author | 陳雯淑 | zh_TW |
dc.date.accessioned | 2021-06-15T13:09:16Z | - |
dc.date.available | 2016-08-26 | |
dc.date.copyright | 2016-08-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-06-29 | |
dc.identifier.citation | 1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer. 2015; 136(5):E359-386.
2. Nordenstedt H, White DL and El-Serag HB. The changing pattern of epidemiology in hepatocellular carcinoma. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2010; 42 Suppl 3:S206-214. 3. Dhanasekaran R, Bandoh S and Roberts LR. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Research. 2016; 5. 4. Bruix J, Sherman M and American Association for the Study of Liver D. Management of hepatocellular carcinoma: an update. Hepatology. 2011; 53(3):1020-1022. 5. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, et al. Sorafenib in advanced hepatocellular carcinoma. The New England journal of medicine. 2008; 359(4):378-390. 6. Lara-Pezzi E, Gomez-Gaviro MV, Galvez BG, Mira E, Iniguez MA, Fresno M, Martinez AC, Arroyo AG and Lopez-Cabrera M. The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. The Journal of clinical investigation. 2002; 110(12):1831-1838. 7. Lee JO, Lee KW, Oh DY, Kim JH, Im SA, Kim TY and Bang YJ. Combination chemotherapy with capecitabine and cisplatin for patients with metastatic hepatocellular carcinoma. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2009; 20(8):1402-1407. 8. Venook AP, Papandreou C, Furuse J and de Guevara LL. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. The oncologist. 2010; 15 Suppl 4:5-13. 9. Fink SA and Jacobson IM. Managing patients with hepatitisB-related or hepatitisC-related decompensated cirrhosis. Nature reviews Gastroenterology & hepatology. 2011; 8(5):285-295. 10. Arzumanyan A, Reis HM and Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nature reviews Cancer. 2013; 13(2):123-135. 11. Brechot C. Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology. 2004; 127(5 Suppl 1):S56-61. 85 12. Bartosch B, Thimme R, Blum HE and Zoulim F. Hepatitis C virus-induced hepatocarcinogenesis. Journal of hepatology. 2009; 51(4):810-820. 13. Lee CF, Ling ZQ, Zhao T and Lee KR. Distinct expression patterns in hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma. World journal of gastroenterology. 2008; 14(39):6072-6077. 14. Ng J and Wu J. Hepatitis B- and hepatitis C-related hepatocellular carcinomas in the United States: similarities and differences. Hepatitis monthly. 2012; 12(10 HCC):e7635. 15. Neuveut C, Wei Y and Buendia MA. Mechanisms of HBV-related hepatocarcinogenesis. Journal of hepatology. 2010; 52(4):594-604. 16. Kuo TC and Chao CC. Hepatitis B virus X protein prevents apoptosis of hepatocellular carcinoma cells by upregulating SATB1 and HURP expression. Biochemical pharmacology. 2010; 80(7):1093-1102. 17. Liu Y, Lou G, Wu W, Zheng M, Shi Y, Zhao D and Chen Z. Involvement of the NF-kappaB pathway in multidrug resistance induced by HBx in a hepatoma cell line. Journal of viral hepatitis. 2011; 18(10):e439-446. 18. Han HK, Han CY, Cheon EP, Lee J and Kang KW. Role of hypoxia-inducible factor-alpha in hepatitis-B-virus X protein-mediated MDR1 activation. Biochemical and biophysical research communications. 2007; 357(2):567-573. 19. Kim HY, Jung HU, Yoo SH, Yoo KS, Cheong J, Park BS, Yun I and Yoo YH. Sorafenib overcomes the chemoresistance in HBx-expressing hepatocellular carcinoma cells through down-regulation of HBx protein stability and suppresses HBV gene expression. Cancer letters. 2014; 355(1):61-69. 20. Wei XL, Qiu MZ, Chen WW, Jin Y, Ren C, Wang F, Luo HY, Wang ZQ, Zhang DS, Wang FH, Li YH and Xu RH. The status of HBV infection influences metastatic pattern and survival in Chinese patients with pancreatic cancer. Journal of translational medicine. 2013; 11:249. 21. Huang Y, Wang Z, An S, Zhou B, Zhou Y, Chan HL and Hou J. Role of hepatitis B virus genotypes and quantitative HBV DNA in metastasis and recurrence of hepatocellular carcinoma. Journal of medical virology. 2008; 80(4):591-597. 22. Lara-Pezzi E, Serrador JM, Montoya MC, Zamora D, Yanez-Mo M, Carretero M, Furthmayr H, Sanchez-Madrid F and Lopez-Cabrera M. The hepatitis B virus X protein (HBx) induces a migratory phenotype in a CD44-dependent manner: possible role of HBx in invasion and metastasis. Hepatology. 2001; 33(5):1270-1281. 23. Liu LP, Liang HF, Chen XP, Zhang WG, Yang SL, Xu T and Ren L. The role of NF-kappaB in Hepatitis b virus X protein-mediated upregulation of VEGF and MMPs. Cancer investigation. 2010; 28(5):443-451. 86 24. Ou DP, Tao YM, Tang FQ and Yang LY. The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. International journal of cancer. 2007; 120(6):1208-1214. 25. Chung TW, Lee YC and Kim CH. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2004; 18(10):1123-1125. 26. Zhang X, Liu S, Hu T, Liu S, He Y and Sun S. Up-regulated microRNA-143 transcribed by nuclear factor kappa B enhances hepatocarcinoma metastasis by repressing fibronectin expression. Hepatology. 2009; 50(2):490-499. 27. Xu X, Fan Z, Kang L, Han J, Jiang C, Zheng X, Zhu Z, Jiao H, Lin J, Jiang K, Ding L, Zhang H, Cheng L, Fu H, Song Y, Jiang Y, et al. Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis. The Journal of clinical investigation. 2013; 123(2):630-645. 28. Sze KM, Chu GK, Lee JM and Ng IO. C-terminal truncated hepatitis B virus x protein is associated with metastasis and enhances invasiveness by C-Jun/matrix metalloproteinase protein 10 activation in hepatocellular carcinoma. Hepatology. 2013; 57(1):131-139. 29. Yang SZ, Zhang AQ, Chen G, Zhang LD, Zhu J, Li XW and Dong JH. [Experimental study of epithelial-mesenchymal transition induced by HBx protein in liver cancer cell]. Zhonghua yi xue za zhi. 2010; 90(12):818-821. 30. Liu H, Xu L, He H, Zhu Y, Liu J, Wang S, Chen L, Wu Q, Xu J and Gu J. Hepatitis B virus X protein promotes hepatoma cell invasion and metastasis by stabilizing Snail protein. Cancer science. 2012; 103(12):2072-2081. 31. Xu J, Liu H, Chen L, Wang S, Zhou L, Yun X, Sun L, Wen Y and Gu J. Hepatitis B virus X protein confers resistance of hepatoma cells to anoikis by up-regulating and activating p21-activated kinase 1. Gastroenterology. 2012; 143(1):199-212 e194. 32. Kew MC. Hepatitis B virus x protein in the pathogenesis of hepatitis B virus-induced hepatocellular carcinoma. Journal of gastroenterology and hepatology. 2011; 26 Suppl 1:144-152. 33. Ye L, Dong N, Wang Q, Xu Z, Cai N, Wang H and Zhang X. Progressive changes in hepatoma cells stably transfected with hepatitis B virus X gene. Intervirology. 2008; 51(1):50-58. 34. Wang XW, Gibson MK, Vermeulen W, Yeh H, Forrester K, Sturzbecher HW, Hoeijmakers JH and Harris CC. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer research. 1995; 55(24):6012-6016. 87 35. Lin Y, Nomura T, Yamashita T, Dorjsuren D, Tang H and Murakami S. The transactivation and p53-interacting functions of hepatitis B virus X protein are mutually interfering but distinct. Cancer research. 1997; 57(22):5137-5142. 36. Cheng AS, Wong N, Tse AM, Chan KY, Chan KK, Sung JJ and Chan HL. RNA interference targeting HBx suppresses tumor growth and enhances cisplatin chemosensitivity in human hepatocellular carcinoma. Cancer letters. 2007; 253(1):43-52. 37. Kapoor NR, Ahuja R, Shukla SK and Kumar V. The HBx protein of hepatitis B virus confers resistance against nucleolar stress and anti-cancer drug-induced p53 expression. FEBS letters. 2013; 587(9):1287-1292. 38. Gottlob K, Fulco M, Levrero M and Graessmann A. The hepatitis B virus HBx protein inhibits caspase 3 activity. The Journal of biological chemistry. 1998; 273(50):33347-33353. 39. Zhu H, Luo SF, Wang J, Li X, Wang H, Pu WY, Zhang H and Zhuang ZX. Effect of environmental factors on chemoresistance of HepG2 cells by regulating hypoxia-inducible factor-1alpha. Chinese medical journal. 2012; 125(6):1095-1103. 40. Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E and Sager R. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science. 1994; 263(5146):526-529. 41. Bailey CM, Khalkhali-Ellis Z, Seftor EA and Hendrix MJ. Biological functions of maspin. Journal of cellular physiology. 2006; 209(3):617-624. 42. Pemberton PA, Wong DT, Gibson HL, Kiefer MC, Fitzpatrick PA, Sager R and Barr PJ. The tumor suppressor maspin does not undergo the stressed to relaxed transition or inhibit trypsin-like serine proteases. Evidence that maspin is not a protease inhibitory serpin. The Journal of biological chemistry. 1995; 270(26):15832-15837. 43. Ngamkitidechakul C, Warejcka DJ, Burke JM, O'Brien WJ and Twining SS. Sufficiency of the reactive site loop of maspin for induction of cell-matrix adhesion and inhibition of cell invasion. Conversion of ovalbumin to a maspin-like molecule. The Journal of biological chemistry. 2003; 278(34):31796-31806. 44. Blandamura S, Giacomelli L, Leo G, Segato P and Ninfo V. Nuclear maspin detection in renal cell tumours: possible diagnostic role and correlation with p53 status. Histopathology. 2006; 49(3):274-282. 45. Blacque OE and Worrall DM. Evidence for a direct interaction between the tumor suppressor serpin, maspin, and types I and III collagen. The Journal of biological chemistry. 2002; 277(13):10783-10788. 46. Yin S, Li X, Meng Y, Finley RL, Jr., Sakr W, Yang H, Reddy N and Sheng S. Tumor-suppressive maspin regulates cell response to oxidative stress by direct 88 interaction with glutathione S-transferase. The Journal of biological chemistry. 2005; 280(41):34985-34996. 47. Seftor RE, Seftor EA, Sheng S, Pemberton PA, Sager R and Hendrix MJ. maspin suppresses the invasive phenotype of human breast carcinoma. Cancer research. 1998; 58(24):5681-5685. 48. Biliran H, Jr. and Sheng S. Pleiotrophic inhibition of pericellular urokinase-type plasminogen activator system by endogenous tumor suppressive maspin. Cancer research. 2001; 61(24):8676-8682. 49. Odero-Marah VA, Khalkhali-Ellis Z, Chunthapong J, Amir S, Seftor RE, Seftor EA and Hendrix MJ. Maspin regulates different signaling pathways for motility and adhesion in aggressive breast cancer cells. Cancer biology & therapy. 2003; 2(4):398-403. 50. Jiang N, Meng Y, Zhang S, Mensah-Osman E and Sheng S. Maspin sensitizes breast carcinoma cells to induced apoptosis. Oncogene. 2002; 21(26):4089-4098. 51. Zhang W, Shi HY and Zhang M. Maspin overexpression modulates tumor cell apoptosis through the regulation of Bcl-2 family proteins. BMC cancer. 2005; 5:50. 52. Li X, Yin S, Meng Y, Sakr W and Sheng S. Endogenous inhibition of histone deacetylase 1 by tumor-suppressive maspin. Cancer research. 2006; 66(18):9323-9329. 53. Nam E and Park C. Maspin suppresses survival of lung cancer cells through modulation of Akt pathway. Cancer research and treatment : official journal of Korean Cancer Association. 2010; 42(1):42-47. 54. Ben Shachar B, Feldstein O, Hacohen D and Ginsberg D. The tumor suppressor maspin mediates E2F1-induced sensitivity of cancer cells to chemotherapy. Molecular cancer research : MCR. 2010; 8(3):363-372. 55. Takanami I, Abiko T and Koizumi S. Expression of maspin in non-small-cell lung cancer: correlation with clinical features. Clinical lung cancer. 2008; 9(6):361-366. 56. Katakura H, Takenaka K, Nakagawa M, Sonobe M, Adachi M, Ito S, Wada H and Tanaka F. Maspin gene expression is a significant prognostic factor in resected non-small cell lung cancer (NSCLC). Maspin in NSCLC. Lung cancer. 2006; 51(3):323-328. 57. Sharma G, Mirza S, Parshad R, Srivastava A, Gupta SD, Pandya P and Ralhan R. Clinical significance of Maspin promoter methylation and loss of its protein expression in invasive ductal breast carcinoma: correlation with VEGF-A and MTA1 expression. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2011; 32(1):23-32. 58. Son HJ, Sohn TS, Song SY, Lee JH and Rhee JC. Maspin expression in human gastric adenocarcinoma. Pathology international. 2002; 52(8):508-513. 89 59. Surowiak P, Materna V, Drag-Zalesinska M, Wojnar A, Kaplenko I, Spaczynski M, Dietel M, Zabel M and Lage H. Maspin expression is characteristic for cisplatin-sensitive ovarian cancer cells and for ovarian cancer cases of longer survival rates. International journal of gynecological pathology : official journal of the International Society of Gynecological Pathologists. 2006; 25(2):131-139. 60. Pierson CR, McGowen R, Grignon D, Sakr W, Dey J and Sheng S. Maspin is up-regulated in premalignant prostate epithelia. The Prostate. 2002; 53(4):255-262. 61. Futscher BW, Oshiro MM, Wozniak RJ, Holtan N, Hanigan CL, Duan H and Domann FE. Role for DNA methylation in the control of cell type specific maspin expression. Nature genetics. 2002; 31(2):175-179. 62. Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL, Cheresh DA and Karin M. Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature. 2007; 446(7136):690-694. 63. Payne CM, Holubec H, Crowley-Skillicorn C, Nguyen H, Bernstein H, Wilcox G and Bernstein C. Maspin is a deoxycholate-inducible, anti-apoptotic stress-response protein differentially expressed during colon carcinogenesis. Clinical and experimental gastroenterology. 2011; 4:239-253. 64. Huang WC, Chen WS, Chen YJ, Wang LY, Hsu SC, Chen CC and Hung MC. Hepatitis B virus X protein induces IKKalpha nuclear translocation via Akt-dependent phosphorylation to promote the motility of hepatocarcinoma cells. Journal of cellular physiology. 2012; 227(4):1446-1454. 65. Ruland J. Return to homeostasis: downregulation of NF-kappaB responses. Nature immunology. 2011; 12(8):709-714. 66. Jiang R, Xia Y, Li J, Deng L, Zhao L, Shi J, Wang X and Sun B. High expression levels of IKKalpha and IKKbeta are necessary for the malignant properties of liver cancer. International journal of cancer. 2010; 126(5):1263-1274. 67. Marquardt JU, Gomez-Quiroz L, Arreguin Camacho LO, Pinna F, Lee YH, Kitade M, Dominguez MP, Castven D, Breuhahn K, Conner EA, Galle PR, Andersen JB, Factor VM and Thorgeirsson SS. Curcumin effectively inhibits oncogenic NF-kappaB signaling and restrains stemness features in liver cancer. Journal of hepatology. 2015; 63(3):661-669. 68. Hacker H and Karin M. Regulation and function of IKK and IKK-related kinases. Science's STKE : signal transduction knowledge environment. 2006; 2006(357):re13. 69. Scheidereit C. IkappaB kinase complexes: gateways to NF-kappaB activation and transcription. Oncogene. 2006; 25(51):6685-6705. 70. Delhase M, Hayakawa M, Chen Y and Karin M. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science. 1999; 284(5412):309-313. 90 71. Mulero MC, Ferres-Marco D, Islam A, Margalef P, Pecoraro M, Toll A, Drechsel N, Charneco C, Davis S, Bellora N, Gallardo F, Lopez-Arribillaga E, Asensio-Juan E, Rodilla V, Gonzalez J, Iglesias M, et al. Chromatin-bound IkappaBalpha regulates a subset of polycomb target genes in differentiation and cancer. Cancer cell. 2013; 24(2):151-166. 72. Fernandez-Majada V, Aguilera C, Villanueva A, Vilardell F, Robert-Moreno A, Aytes A, Real FX, Capella G, Mayo MW, Espinosa L and Bigas A. Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104(1):276-281. 73. Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV and Karin M. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001; 107(6):763-775. 74. Cao Y, Luo JL and Karin M. IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America. 2007; 104(40):15852-15857. 75. Shi K, An J, Shan L, Jiang Q, Li F, Ci Y, Wu P, Duan J, Hui K, Yang Y and Xu C. Survivin-2B promotes autophagy by accumulating IKK alpha in the nucleus of selenite-treated NB4 cells. Cell death & disease. 2014; 5:e1071. 76. Ali A, Abdel-Hafiz H, Suhail M, Al-Mars A, Zakaria MK, Fatima K, Ahmad S, Azhar E, Chaudhary A and Qadri I. Hepatitis B virus, HBx mutants and their role in hepatocellular carcinoma. World journal of gastroenterology. 2014; 20(30):10238-10248. 77. Yamamoto Y, Verma UN, Prajapati S, Kwak YT and Gaynor RB. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature. 2003; 423(6940):655-659. 78. Yoshida K, Ozaki T, Furuya K, Nakanishi M, Kikuchi H, Yamamoto H, Ono S, Koda T, Omura K and Nakagawara A. ATM-dependent nuclear accumulation of IKK-alpha plays an important role in the regulation of p73-mediated apoptosis in response to cisplatin. Oncogene. 2008; 27(8):1183-1188. 79. Nowak SJ and Corces VG. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends in genetics : TIG. 2004; 20(4):214-220. 80. Yen C HW. (2014). MicroRNA expressions in human hepatocarcinoma cells in response to HBV X protein expression. GEO). 91 81. Zhang CZ, Zhang HT, Chen GG and Lai PB. Trichostatin A sensitizes HBx-expressing liver cancer cells to etoposide treatment. Apoptosis : an international journal on programmed cell death. 2011; 16(7):683-695. 82. Maass N, Biallek M, Rosel F, Schem C, Ohike N, Zhang M, Jonat W and Nagasaki K. Hypermethylation and histone deacetylation lead to silencing of the maspin gene in human breast cancer. Biochemical and biophysical research communications. 2002; 297(1):125-128. 83. Chen YJ, Chien PH, Chen WS, Chien YF, Hsu YY, Wang LY, Chen JY, Lin CW, Huang TC, Yu YL and Huang WC. Hepatitis B Virus-Encoded X Protein Downregulates EGFR Expression via Inducing MicroRNA-7 in Hepatocellular Carcinoma Cells. Evidence-based complementary and alternative medicine : eCAM. 2013; 2013:682380. 84. Cenik ES and Zamore PD. Argonaute proteins. Current biology : CB. 2011; 21(12):R446-449. 85. Huang WC, Ju TK, Hung MC and Chen CC. Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Molecular cell. 2007; 26(1):75-87. 86. Burden HE and Weng Z. Identification of conserved structural features at sequentially degenerate locations in transcription factor binding sites. Genome informatics International Conference on Genome Informatics. 2005; 16(1):49-58. 87. Sandelin A, Alkema W, Engstrom P, Wasserman WW and Lenhard B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic acids research. 2004; 32(Database issue):D91-94. 88. Tsunoda T and Takagi T. Estimating transcription factor bindability on DNA. Bioinformatics. 1999; 15(7-8):622-630. 89. Perez-Cadahia B, Drobic B and Davie JR. H3 phosphorylation: dual role in mitosis and interphase. Biochemistry and cell biology = Biochimie et biologie cellulaire. 2009; 87(5):695-709. 90. Bodenstine TM, Seftor RE, Khalkhali-Ellis Z, Seftor EA, Pemberton PA and Hendrix MJ. Maspin: molecular mechanisms and therapeutic implications. Cancer metastasis reviews. 2012; 31(3-4):529-551. 91. Sheng S, Carey J, Seftor EA, Dias L, Hendrix MJ and Sager R. Maspin acts at the cell membrane to inhibit invasion and motility of mammary and prostatic cancer cells. Proceedings of the National Academy of Sciences of the United States of America. 1996; 93(21):11669-11674. 92. Zhang M, Volpert O, Shi YH and Bouck N. Maspin is an angiogenesis inhibitor. Nature medicine. 2000; 6(2):196-199. 92 93. Yu LR, Zeng R, Shao XX, Wang N, Xu YH and Xia QC. Identification of differentially expressed proteins between human hepatoma and normal liver cell lines by two-dimensional electrophoresis and liquid chromatography-ion trap mass spectrometry. Electrophoresis. 2000; 21(14):3058-3068. 94. Triulzi T, Ratti M, Tortoreto M, Ghirelli C, Aiello P, Regondi V, Di Modica M, Cominetti D, Carcangiu ML, Moliterni A, Balsari A, Casalini P and Tagliabue E. Maspin influences response to doxorubicin by changing the tumor microenvironment organization. International journal of cancer. 2014; 134(12):2789-2797. 95. Chan CF, Yau TO, Jin DY, Wong CM, Fan ST and Ng IO. Evaluation of nuclear factor-kappaB, urokinase-type plasminogen activator, and HBx and their clinicopathological significance in hepatocellular carcinoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004; 10(12 Pt 1):4140-4149. 96. Yoo YG, Na TY, Seo HW, Seong JK, Park CK, Shin YK and Lee MO. Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene. 2008; 27(24):3405-3413. 97. Lee SJ, Jang H and Park C. Maspin increases Ku70 acetylation and Bax-mediated cell death in cancer cells. International journal of molecular medicine. 2012; 29(2):225-230. 98. Allavena P, Garlanda C, Borrello MG, Sica A and Mantovani A. Pathways connecting inflammation and cancer. Current opinion in genetics & development. 2008; 18(1):3-10. 99. Sun B and Karin M. NF-kappaB signaling, liver disease and hepatoprotective agents. Oncogene. 2008; 27(48):6228-6244. 100. Liao XH, Li YQ, Wang N, Zheng L, Xing WJ, Zhao DW, Yan TB, Wang Y, Liu LY, Sun XG, Hu P, Zhou H and Zhang TC. Re-expression and epigenetic modification of maspin induced apoptosis in MCF-7 cells mediated by myocardin. Cellular signalling. 2014; 26(6):1335-1346. 101. Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM and Allis CD. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Molecular cell. 2000; 5(6):905-915. 102. Liu LN, Li DD, Xu HX, Zheng SG and Zhang XP. Role of microRNAs in hepatocellular carcinoma. Frontiers in bioscience. 2015; 20:1056-1067. 103. Srivastava SK, Arora S, Averett C, Singh S and Singh AP. Modulation of microRNAs by phytochemicals in cancer: underlying mechanisms and translational significance. BioMed research international. 2015; 2015:848710. 93 104. Neelakandan K, Babu P and Nair S. Emerging roles for modulation of microRNA signatures in cancer chemoprevention. Current cancer drug targets. 2012; 12(6):716-740. 105. Yu Z, Ni L, Chen D, Zhang Q, Su Z, Wang Y, Yu W, Wu X, Ye J, Yang S, Lai Y and Li X. Identification of miR-7 as an oncogene in renal cell carcinoma. Journal of molecular histology. 2013; 44(6):669-677. 106. Hao Z, Yang J, Wang C, Li Y, Zhang Y, Dong X, Zhou L, Liu J, Zhang Y and Qian J. MicroRNA-7 inhibits metastasis and invasion through targeting focal adhesion kinase in cervical cancer. International journal of clinical and experimental medicine. 2015; 8(1):480-487. 107. Tu CY, Chen CH, Hsia TC, Hsu MH, Wei YL, Yu MC, Chen WS, Hsu KW, Yeh MH, Liu LC, Chen YJ and Huang WC. Trichostatin A suppresses EGFR expression through induction of microRNA-7 in an HDAC-independent manner in lapatinib-treated cells. BioMed research international. 2014; 2014:168949. 108. Hsia TC, Tu CY, Chen YJ, Wei YL, Yu MC, Hsu SC, Tsai SL, Chen WS, Yeh MH, Yen CJ, Yu YL, Huang TC, Huang CY, Hung MC and Huang WC. Lapatinib-mediated cyclooxygenase-2 expression via epidermal growth factor receptor/HuR interaction enhances the aggressiveness of triple-negative breast cancer cells. Molecular pharmacology. 2013; 83(4):857-869. 109. Chen YJ, Yeh MH, Yu MC, Wei YL, Chen WS, Chen JY, Shih CY, Tu CY, Chen CH, Hsia TC, Chien PH, Liu SH, Yu YL and Huang WC. Lapatinib-induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors. Breast cancer research : BCR. 2013; 15(6):R108. 110. Sheth S, Jajoo S, Kaur T, Mukherjea D, Sheehan K, Rybak LP and Ramkumar V. Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway. PloS one. 2012; 7(12):e51655. 111. Kleivi Sahlberg K, Bottai G, Naume B, Burwinkel B, Calin GA, Borresen-Dale AL and Santarpia L. A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients. Clinical cancer research : an official journal of the American Association for Cancer Research. 2015; 21(5):1207-1214. 112. Zhang Y, Qu X, Li C, Fan Y, Che X, Wang X, Cai Y, Hu X and Liu Y. miR-103/107 modulates multidrug resistance in human gastric carcinoma by downregulating Cav-1. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015; 36(4):2277-2285. 113. Huang JW, Wang Y, Dhillon KK, Calses P, Villegas E, Mitchell PS, Tewari M, Kemp CJ and Taniguchi T. Systematic screen identifies miRNAs that target RAD51 and RAD51D to enhance chemosensitivity. Molecular cancer research : MCR. 2013; 11(12):1564-1573. 94 114. Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, Lin L, Yao H, Su F, Li D, Zeng M and Song E. A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer cell. 2015; 27(3):370-381. 115. Mocellin S, Hoon D, Ambrosi A, Nitti D and Rossi CR. The prognostic value of circulating tumor cells in patients with melanoma: a systematic review and meta-analysis. Clinical cancer research : an official journal of the American Association for Cancer Research. 2006; 12(15):4605-4613. 116. Mocellin S, Keilholz U, Rossi CR and Nitti D. Circulating tumor cells: the 'leukemic phase' of solid cancers. Trends in molecular medicine. 2006; 12(3):130-139. 117. Nakagawa T, Martinez SR, Goto Y, Koyanagi K, Kitago M, Shingai T, Elashoff DA, Ye X, Singer FR, Giuliano AE and Hoon DS. Detection of circulating tumor cells in early-stage breast cancer metastasis to axillary lymph nodes. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007; 13(14):4105-4110. 118. Pantel K, Brakenhoff RH and Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nature reviews Cancer. 2008; 8(5):329-340. 119. Muller V, Stahmann N, Riethdorf S, Rau T, Zabel T, Goetz A, Janicke F and Pantel K. Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clinical cancer research : an official journal of the American Association for Cancer Research. 2005; 11(10):3678-3685. 120. Paterlini-Brechot P and Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer letters. 2007; 253(2):180-204. 121. Zhang YC, Xu Z, Zhang TF and Wang YL. Circulating microRNAs as diagnostic and prognostic tools for hepatocellular carcinoma. World journal of gastroenterology. 2015; 21(34):9853-9862. 122. Reddy KB, McGowen R, Schuger L, Visscher D and Sheng S. Maspin expression inversely correlates with breast tumor progression in MMTV/TGF-alpha transgenic mouse model. Oncogene. 2001; 20(45):6538-6543. 123. Streuli CH. Maspin is a tumour suppressor that inhibits breast cancer tumour metastasis in vivo. Breast cancer research : BCR. 2002; 4(4):137-140. 124. Zhang M, Shi Y, Magit D, Furth PA and Sager R. Reduced mammary tumor progression in WAP-TAg/WAP-maspin bitransgenic mice. Oncogene. 2000; 19(52):6053-6058. 125. Watanabe M, Nasu Y, Kashiwakura Y, Kusumi N, Tamayose K, Nagai A, Sasano T, Shimada T, Daida H and Kumon H. Adeno-associated virus 2-mediated intratumoral 95 prostate cancer gene therapy: long-term maspin expression efficiently suppresses tumor growth. Human gene therapy. 2005; 16(6):699-710. 126. Shi HY, Zhang W, Liang R, Abraham S, Kittrell FS, Medina D and Zhang M. Blocking tumor growth, invasion, and metastasis by maspin in a syngeneic breast cancer model. Cancer research. 2001; 61(18):6945-6951. 127.Goulet B, Kennette W, Ablack A, Postenka CO, Hague MN, Mymryk JS, Tuck AB, Giguere V, Chambers AF and Lewis JD. Nuclear localization of maspin is essential for its inhibition of tumor growth and metastasis. Laboratory investigation; a journal of technical methods and pathology. 2011; 91(8):1181-1187. 128. Cher ML, Biliran HR, Jr., Bhagat S, Meng Y, Che M, Lockett J, Abrams J, Fridman R, Zachareas M and Sheng S. Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis. Proceedings of the National Academy of Sciences of the United States of America. 2003; 100(13):7847-7852. 129. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M and Stoffel M. Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005; 438(7068):685-689. 130. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S and Orum H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010; 327(5962):198-201. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50962 | - |
dc.description.abstract | Maspin 透過促進細胞貼附和細胞凋亡,以及抑制細胞移動能力而抑制腫瘤進展。然而maspin在肝癌(hepatocellular carcinoma, HCC)中的角色尚未釐清。因此,本篇研究主要探討maspin蛋白在肝癌中的調控機制,以及其表現與HCC病人的預後之間的關聯性。本研究發現,Hepatitis B virus (HBV)感染誘發的肝癌中maspin蛋白之表現量降低,並與肝癌病人的預後較差有高度相關性。我們進一步發現,HBV主要透過X蛋白(HBx)增加microRNA-7/107/21的表現,直接結合maspin mRNA而抑制maspin蛋白表現,進而促進肝癌細胞的移動能力以及增加細胞對anoikis和化療的抗性。在臨床檢體中也發現,高度表現這些microRNA的HCC病人其maspin表現量較低並有較差的存活率。此外,在HBV感染的HCC病人檢體中nuclear inhibitor-kB kinase-α (IKKα)的表現量和maspin表現量呈高度負相關。我們也發現maspin mRNA 和蛋白的表現量會受到nuclear IKKα抑制,但卻不受IKKβ影響。抑制IKKα 可以有效回復HBx造成的maspin表現抑制和化療抗性。更進一步證實,HBx過度表現會促使nuclear IKKα直接結合到microRNA-7、microRNA -103、microRNA -107和microRNA-21的promoter上,誘發這些microRNA的轉錄,進而抑制maspin的表現。
此研究不僅證實了HBV感染降低maspin表現的分子機制,更指出nuclear IKKα是造成HBx誘發HCC腫瘤侵略性和化療抗性的主要調控因子。因此,IKKα可望成為治療標靶以提升臨床上HCC病人的療效。 | zh_TW |
dc.description.abstract | Maspin suppresses tumor progression by promoting cell adhesion and apoptosis and by inhibiting cell motility. However, its role in tumorigenesis of hepatocellular carcinoma (HCC) remains unclear. The gene regulation of maspin and its relationship with HCC patient prognosis were investigated in this study. Maspin expression was specifically reduced in HBV-associated patients and correlated with their poor prognosis. Maspin downregulation in HCC cells was induced by HBV X protein (HBx) to promote their motility and resistance to anoikis and chemotherapy. HBx-dependent induction of microRNA-7, -107, and -21 was further demonstrated to directly target maspin mRNA, leading to its protein downregulation. Higher expressions of these microRNAs were also correlated with maspin downregulation in HBV-associated HCC patients, and were associated with their poor overall survival. Our data further revealed that nuclear inhibitor-kB kinase-α (IKKα) expression was inversely correlated with maspin expression in HBV-associated patients. Nuclear IKKα but not IKKβ reduced maspin protein and mRNA expression, and inhibition of IKKα reverses HBx-mediated maspin downregulation and chemoresistance. In response to HBx overexpression, nuclear IKKα was further demonstrated to induce the gene expressions of microRNA-7, -103, -107, and -21 by directly targeting their promoters, thereby leading to maspin downregulation. These data not only provided new insights into the molecular mechanisms of maspin deficiency by HBx, but also indicated nuclear IKKα as a critical regulator for HBx-mediated aggressiveness and chemoresistance in HCC, and suggested IKKα as a promising target to improve the therapeutic outcome of HCC patients. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:09:16Z (GMT). No. of bitstreams: 1 ntu-105-D00443003-1.pdf: 5186377 bytes, checksum: e583dc49b6f7a8811754f35e56a4323c (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Abbreviations………………………………………………………….…..…i
Chinese Abstract………………..…………………………………………...iv English Abstract….…….……………………………………………..…….vi Chapter 1- Introduction….…………………………………………………………….1 1-1. Hepatocellular carcinoma…………………………………………………2 1-2. Hepatitis virus infection and HCC development………………………...3 1-3. Role of HBx in HCC progression and drug resistance…………….…….5 1-4. Tumor suppressor gene Maspin……………………………………….….6 1-5. NF-κB signaling pathway……………………………………………….....8 1-6. Role of IKK in maspin regulation……………...………………………10 1-7. Motivation…………………………………………..…………………….10 Chapter 2- Materials and Methods…………………………………………………..12 Chapter 3- Results……………………………………………………………………..24 3-1. Downregulation of maspin by HBx correlates inversely with disease-free survival of HBV-associated HCC patients..................................................25 3-2. HBx-mediated suppression of maspin contributes to metastasis, anoikis resistance, and chemoresistance…………………………………….……26 3-3. HBx induces microRNA-7, -103, -107, and -21 to suppress maspin expression………………………………………………………………….28 3-4. Nuclear IKK significantly correlates with low levels of maspin expression in HBV-associated HCC patients…………………………….30 3-5. Nuclear IKK but not IKK mediated HBx-dependent maspin suppression and chemoresistance in HCC cells………………………….31 3-6. Nuclear IKKα downregulats maspin expression through disrupting its mRNA stability…………………………………………………………….32 3-7. Nuclear IKKα induces miR-7, -103, -107, and -21 to mediate HBx- dependent maspin suppression……………………………………………33 3-8. Nuclear IKK coordinates the transcriptional activity of NF-B to mediate microRNA-7/21/103/107 expressions in HBx-expressing HCC cells………………………………………………………………………...34 Chapter 4- Discussion…………………………………………………………………71 Chapter 5- Conclusion……………………...…………………………………………79 Chapter 6- Perspective…………………….………………………………………….81 References………………………………...……………………………………………83 Appendix……………………………………………………………………………….96 Publication list……………………………..…………………………………………101 | |
dc.language.iso | en | |
dc.title | HBx經由IKKα/microRNA路徑抑制maspin表現促進肝癌惡化 | zh_TW |
dc.title | Suppression of Maspin by IKKα-dependent MicroRNAs Confers HBx-mediated Hepatocellular Cancer Progression | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 黃偉謙(Wei-Chien Huang) | |
dc.contributor.oralexamcommittee | 吳明賢(Ming-Shiang Wu),楊春茂(Chuen-Mao Yang),王紹椿(Shao-Chun Wang),謝嘉玲(Chia-Ling Hsieh) | |
dc.subject.keyword | HBx,maspin,IKKα,NFkB,microRNA,轉移,化療抗性, | zh_TW |
dc.subject.keyword | HBx,maspin,IKKα,NFkB,microRNA,metastasis,chemoresistance, | en |
dc.relation.page | 105 | |
dc.identifier.doi | 10.6342/NTU201600556 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-06-29 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 5.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。