請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5095完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳尊賢 | |
| dc.contributor.author | Yi-Ting Lee | en |
| dc.contributor.author | 李依庭 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:51:50Z | - |
| dc.date.available | 2014-08-17 | |
| dc.date.available | 2021-05-15T17:51:50Z | - |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-14 | |
| dc.identifier.citation | 行政院環保署。2003。土壤重金屬檢測方法-王水消化法。NIEA S321.63B。中華
民國92年7月1日環署檢字第0920047102號公告。 行政院環保署。2014。全國農地重金屬污染潛勢調查成果報告。土壤及地下水污 染整治網。http://sgw.epa.gov.tw/public/0501.aspx。 行政院農委會。2013。101年我國糧食供需統計結果。農政與農情第256期。 林國清。2004。水稻新品種臺南11號之育成。臺南區農業改良場研究匯報45, 1-25。 陳尊賢。1988。桃園基力化工廠北方之水田區稻穀粒中重金屬含量調查。行政院 農委會補助計劃。 陳怡君。2010。堆肥銅鋅濃度對球莖甘藍生長及其吸收銅鋅之影響。國立臺灣大 學生物資源暨農學院農業化學系碩士論文。 蘇紹瑋與陳尊賢。2008。土壤清洗法整治重金屬污染國內外最新研究與整治案例 回顧。台灣土壤及地下水環境保護協會27, 4-12。 Almas, A.R., Singh, B.R., 2001. Plant uptake of cadmium-109 and zinc-65 at different temperature and organic matter levels. Journal of Environmental Quality 30, 869-877. Alloway, B.J., Steinnes, E., 1999. Anthropogenic Additions of Cadmium to Soils. In: McLaughlin, M.J., Singh, B.R. (Eds), Cadmium in soil and plants., Kluwer Academic Publishers, pp.97-124. Alowitz, M.J., Scherer, M.M., 2002. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environmental Science & Technology 36, 299-306. Arao, T., Ishikawa, S., Murakami, M., Abe, K., Maejima, Y., Makino, T., 2010. Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy and Water Environment 8, 247-257. Arao, T., Kawasaki, A., Baba, K., Mori, S., Matsumoto, S., 2009. Effects of Water Management on Cadmium and Arsenic Accumulation and Dimethylarsinic Acid Concentrations in Japanese Rice. Environmental Science & Technology 43, 9361-9367. Bakerm A.J.M., McGrath, S.P., Sidoli, C.M., Reeves, R.D., 1994. The posiibility of in-situ heavy-metal decontamination of polluted soils using crops of metal-accumulation plants. Resources, Conservation and Recycling 11,41-49 Bhattacharyya, P., Chakraborty, A., Chakrabarti, K., Tripathy, S., Powell, M.A., 2006. Copper and zinc uptake by rice and accumulation in soil amended with municipal solid waste compost. Environmental Geology 49, 1064-1070. Boisson, J., Mench, M., Vangronsveld, J., Ruttens, A., Kopponen, P., De Koe, T., 1999. Immobilization of trace metals and arsenic by different soil additives: Evaluation by means of chemical extractions. Communications in Soil Science and Plant Analysis 30, 365-387. Boparai, H.K., Joseph, M., O'Carroll, D.M., 2011. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials 186, 458-465. Caires, E.F., Garbuio, F.J., Churka, S., Barth, G., Correa, J.C.L., 2008. Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield. European Journal of Agronomy 28, 57-64. Cao, J.S., Elliott, D., Zhang, W.X., 2005. Perchlorate reduction by nanoscale iron particles. Journal of Nanoparticle Research 7, 499-506. Chaney, R.L., Giordano., P.M., 1977. Microelements as related to plant deficiencies and toxicities. In: Soils for Management of Organic Wastes and Waste Waters, pp. 234–279. Chaney R.L., Ryan, J.A., Li, Y-M., Brown, S.L., 1999. Soil Cadmiums as a Threat to Human Health. In: McLaughlin, M.J., Singh, B.R. (Eds), Cadmium in soil and plants., Kluwer Academic Publishers, pp.219-256. Chang, M.C., Kang, H.Y., 2009. Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering 44, 576-582. Chen, Z.S., Lee, D.Y., 1997. Evaluation of remediation techniques on two cadmium-polluted soils in Taiwan. In Iskandar, I.K., Adriano, D.C. (Ed), Remediation of Soils Contaminated with Metals,., pp. 209–223, Science Reviews, Northwood, UK. Chen, Z.S., Lee, G.J., Liu, J.C., 2000. The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils. Chemosphere 41, 235-242. Chen, Z.S., Su, S.W., Guo, H.Y., Tsai, C.C., Hseu, Z.Y., 2007. New Aspects of Collaborative Research on Soil Pollution, Food Safety and Soil Remediation Techniques in Asia, Technical Bulletin No. 175 1–35. Taipei, Taiwan: Food and Fertilizer Technology Center (FFTC). Chino, M., Baba, A., 1981. The effects of some environmental-factors on the partitioning of zinc and cadmium between roots and tops of rice plants. Journal of Plant Nutrition 3, 203-214. Chirenje, T., Ma, L.Q., 1999. Effects of acidification on metal mobility in a papermill-ash amended soil. Journal of Environmental Quality 28, 760-766 Choudhary, M., Bailey, L.D., Grant, C.A., 1996. Review of the use of swine manure in crop production: Effects on yield and composition and on soil and water quality. Waste Management & Research 14, 581-595. Christensen, T.H., 1984. Cadmium soil sorption at low concentrations. 1. Effect of time, cadmium load, pH, and calcium. Water Air and Soil Pollution 21, 105-114. Ciecko, Z., Wyszkowski, M., Krajewski, W., Zabielska, J., 2001. Effect of organic matter and liming on the reduction of cadmium uptake from soil by triticale and spring oilseed rape. Science of the Total Environment 281, 37-45. Cullen, L.G., Tilston, E.L., Mitchell, G.R., Collins, C.D., Shaw, L.J., 2011. Assessing the impact of nano- and micro-scale zerovalent iron particles on soil microbial activities: Particle reactivity interferes with assay conditions and interpretation of genuine microbial effects. Chemosphere 82, 1675-1682. Cundy, A.B., Hopkinson, L., Whitby, R.L.D., 2008. Use of iron-based technologies in contaminated land and groundwater remediation: A review. Science of the Total Environment 400, 42-51. Das, P., Samantaray, S., Rout, G.R., 1997. Studies on cadmium toxicity in plants: A review. Environmental Pollution 98, 29-36. Dunnivant, F.M., Jardine, P.M., Taylor, D.L., McCarthy, J.F., 1992. Cotransport of cadmium and hexachlorobiphenyl by dissolved organic-carbon through columns containing aquifer material. Environmental Science & Technology 26, 360-368. During, R.A., Hoss, T., Gath, S., 2003. Sorption and bioavailability of heavy metals in long-term differently tilled soils amended with organic wastes. Science of the Total Environment 313, 227-234. Ebbs, S.D., Lasat, M.M., Brady, D.J., Cornish, J., Gordon, R., Kochian, L.V., 1997. Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality 26, 1424-1430. Edwards, R., Rebedea, I., Lepp, N.W., Lovell, A.J., 1999. An investigation into the mechanism by which synthetic zeolites reduce labile metal concentrations in soils. Environmental Geochemistry and Health 21, 157-173. El-Temsah, Y.S., Joner, E.J., 2012. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology 27, 42-49. Fajardo, C., Ortiz, L.T., Rodriguez-Membibre, M.L., Nande, M., Lobo, M.C., Martin, M., 2012. Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: A molecular approach. Chemosphere 86, 802-808. FAOSTAT, 2014. http://faostat.fao.org/ Fernandes, M.L., Abreu, M.M., Calouro, F., Vaz, M.C., 1999. Effect of liming and cadmium application in an acid soil on cadmium availability to sudangrass. Communications in Soil Science and Plant Analysis 30, 1051-1062. Garcia-Sanchez, A., Alastuey, A., Querol, X., 1999. Heavy metal adsorption by different minerals: application to the remediation of polluted soils. Science of the Total Environment 242, 179-188. Gardner, W.H., 1986. Water content. In: Klute, A. (Ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Second ed., Agronomy Monography No. 9, pp. 493-544. Gee, G.W., Bauder, J.W., 1986. Particle-size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Second ed., Agronomy Monography No. 9, pp. 383-411. Gregson, S.K., Alloway, B.J., 1984. Gel-permeation chromatography studies on the speciation of lead in solutions heavily polluted soils. Journal of Soil Science 35, 55-61. Grewal, H.S., Williams, R., 2003. Liming and cultivars affect root growth, nodulation, leaf to stem ratio, herbage yield, and elemental composition of alfalfa on an acid soil. Journal of Plant Nutrition 26, 1683-1696. Guo, L., Bicki, T.J., Felsot, A.S., Hinesly, T.D., 1993. Sorption and movement of Alachlor in soil modified by carbon2rich waste. Journal Environmental Quality 22, 186-194 Guo, H.Y., Liu, T.S., Chu, C.L., Chiang, C.F. 2007. Prediction of heavy metals uptake by different rice species in paddy soils near contaminated sites of Taiwan. In: Chen, Z.S. (Ed.), Proceedings of the International Workshop of ESAFS8: New Solutions to Soil Pollution and Distribution, Bioavailability and Management of Heavy Metals., pp. 95-116., Taipei, Taiwan: Food and Fertilizer Technology Center (FFTC). Gupta, A.K., Sinha, S., 2006. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere 64, 161-173. Handy, R.D., von der Kammer, F., Lead, J.R., Hassellov, M., Owen, R., Crane, M., 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17, 287-314. Hashimoto, Y., Yamaguchi, N., 2013. Chemical speciation of cadmium and sulfur K-Edge XANES spectroscopy in flooded paddy soils amended with zerovalent iron. Soil Science Society of America Journal 77, 1189-1198. Hooda, P.S., McNulty, D., Alloway, B.J., Aitken, M.N., 1997. Plant availability of heavy metals in soils previously amended with heavy applications of sewage sludge. Journal of the Science of Food and Agriculture 73, 446-454. Hseu, Z.-Y., Su, S.-W., Lai, H.-Y., Guo, H.-Y., Chen, T.-C., Chen, Z.-S., 2010. Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: New aspects for food safety regulation and sustainable agriculture. Soil Science and Plant Nutrition 56, 31-52. Hu, P.J., Li, Z., Yuan, C., Ouyang, Y.N., Zhou, L.Q., Huang, J.X., Huang, Y.J., Luo, Y.M., Christie, P., Wu, L.H., 2013. Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. Journal of Soils and Sediments 13, 916-924. Huang, C.P., Wang, H.W., Chiu, P.C., 1998. Nitrate reduction by metallic iron. Water Research 32, 2257-2264. Hue, N.V., 1992. Correcting soil acidity of a highly weathered ultisols with chicken manure and sewage-sludge. Communications in Soil Science and Plant Analysis 23, 241-264. Hue, N.V., Amien, I., 1989. Aluminum detoxification with green manures. Communications in Soil Science and Plant Analysis 20, 1499-1511. Husson, O., 2013. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: a transdisciplinary overview pointing to integrative opportunities for agronomy. Plant and Soil 362, 389-417. Japan MOE, 2006. Enforcement status of Agricultural Land-Soil Pollution Prevention Law in 2005 fiscal year. http://www.env.go.jp/water/dojo/nouyo/ jokyo_h17.pdf Jien, S.H., Hseu, Z.Y., Chen, Z.S., 2004. Relations between morphological color index and soil wetness condition of anthraquic soils in Taiwan. Soil Science 169, 871-882. Jokela, W.E., 1992. Nitrogen fertilizer and dairy manure effects on corn yield and soil nitrate. Soil Science Society of America Journal 56, 148-154. Jones, J.B., Jr., Case, V.W., 1990. Sampling, handling, and analyzing plant tissue samples. In: Westerman, R.L. (Ed)., Soil Testing and Plant Analysis., Third ed., Soil Science Society of America, Book series No.3., pp.389-427. Jones, K.C., Johnston, A.E., 1989. Cadmium in cereal grain and herbage from long-term experimental plots at Rothamsted, Uk. Environmental Pollution 57, 199-216. Kabata-Pendias, A., Pendias, H., 2001. Trace Element in Soils and Plants. Third ed., CRC Press, Boca Raton, Florida Kashem, M.A., Singh, B.R., 2001. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrient Cycling in Agroecosystems 61, 247-255. Kawada, T., Suzuki, S., 1998. A review on the cadmium content of rice, daily cadmium intake, and accumulation in the kidneys. Journal of Occupational Health 40, 264-269. Kim, J.H., Lee, Y., Kim, E.J., Gu, S., Sohn, E.J., Seo, Y.S., An, H.J., Chang, Y.S., 2014. Exposure of Iron Nanoparticles to Arabidopsis thaliana Enhances Root Elongation by Triggering Cell Wall Loosening. Environmental Science & Technology 48, 3477-3485. Kirkham, M.B., 2006. Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma 137, 19-32. Kobayashi, J., 1978. Pollution by Cadmium and the Itai-Itai Disease in Japan. In: Oehme, F.W. (Ed.), Toxicity of Heavy Metals in the Environment., Part 1, Marcel Dekker, New York. Kumpiene, J., Mench, M., Bes, C.M., Fitts, J.P., 2011. Assessment of aided phytostabilization of copper-contaminated soil by X-ray absorption spectroscopy and chemical extractions. Environmental Pollution 159, 1536-1542. Lai, H.Y., Chen, Z.S., 2004. Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere 55, 421-430. Lee, J.H., 2013. An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnology and Bioprocess Engineering 18, 431-439. Lee, S.H., Lee, J.S., Choi, Y.J., Kim, J.G., 2009. In situ stabilization of cadmium-, lead-,and zinc-contaminated soil using various amendments. Chemosphere 77, 1069-1075. Lee, T.M., Lai, H.Y., Chen, Z.S., 2004. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils. Chemosphere 57, 1459-1471. Li, P., Wang, X.X., Zhang, T.L., Zhou, D.M., He, Y.Q., 2008. Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil. Journal of Environmental Sciences-China 20, 449-455. Li, P., Wang, X.X., Zhang, T.L., Zhou, D.M., He, Y.Q., 2009a. Distribution and accumulation of copper and cadmium in soil-rice system as affected by soil amendments. Water Air and Soil Pollution 196, 29-40. Li, S.T., Liu, R.L., Wang, H.T., Shan, H., 2009b. Accumulations of cadmium, zinc, and copper by rice plants grown on soils amended with composted pig manure. Communications in Soil Science and Plant Analysis 40, 1889-1905. Li, X.Q., Elliott, D.W., Zhang, W.X., 2006. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences 31, 111-122. Li, X.Q., Zhang, W.X., 2006. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22, 4638-4642. Li, X.Q., Zhang, W.X., 2007. Sequestration of metal cations with zerovalent iron nanoparticles - A study with high resolution X-ray photoelectron spectroscopy (HR-XPS). Journal of Physical Chemistry C 111, 6939-6946. Lindsay, W.L. 1979. Chemical equilibria in soils. John Wiley, New York. Lien, H.L., Zhang, W.X., 1999. Transformation of chlorinated methanes by nanoscale iron particles. Journal of Environmental Engineering-Asce 125, 1042-1047. Lin, D.S., Zhou, Q.X., 2009. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil. Bulletin of Environmental Contamination and Toxicology 83, 136-140. Luo, C.L., Shen, Z.G., Lou, L.Q., Li, X.D., 2006. EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environmental Pollution 144, 862-871. Ma, X.M., Gurung, A., Deng, Y., 2013. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Science of the Total Environment 443, 844-849. Makino, T., Sugahara, K., Sakurai, Y., Takano, H., Kamiya, T., Sasaki, K., Itou, T., Sekiya, N., 2006. Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals. Environmental Pollution 144, 2-10. Makino, T., 2007. Heavy metal pollution of soil and a new approach to its remediation: research experiences in Japan. In: Chen, Z.S. (Ed.), Proceedings of the International Workshop of ESAFS8: New Solutions to Soil Pollution and Distribution, Bioavailability and Management of Heavy Metals., pp. 55-74., Taipei, Taiwan: Food and Fertilizer Technology Center (FFTC). Makino, T., Takano, H., Kamiya, T., Itou, T., Sekiya, N., Inahara, M., Sakurai, Y., 2008. Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification. Chemosphere 70, 1035-1043. Manna, M.C., Swarup, A., Wanjari, R.H., Ravankar, H.N., Mishra, B., Saha, M.N., Singh, Y.V., Sahi, D.K., Sarap, P.A., 2005. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crops Research 93, 264-280. McBride, M.B., Pitiranggon, M., Kim, B., 2009. A comparison of tests for extractable copper and zinc in metal-spiked and field-contaminated soil. Soil Science 174, 439-444. Mehra, O.P., Jackson, M.L., 1960. Iron oxides removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Mineral 7, 317-327. Mench, M.J., Didier, V.L., Loffler, M., Gomez, A., Masson, P., 1994. A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. Journal of Environmental Quality 23, 58-63. Mortvedt, J.J., 1987. Cadmium levels in soils and plants from some long-term soil fertilityexperiments in the United States of America. Journal of Environmental Quality 16, 137-142. Murakami, M., Ae, N., Ishikawa, S., 2007. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environmental Pollution 145, 96-103. Nelson, D.W., Sommers, L.E., 1996. Total carbon, organic carbon, and organic matter. In: Sparks et al. D.L. (Ed.), Methods of Soil Analysis, Part 3. Chemical and Microbiological Properties, Second ed., Agronomy Monograph No. 9, pp. 961-1100. Noble, A.D., Zenneck, I., Randall, P.J., 1996. Leaf litter ash alkalinity and neutralisation of soil acidity. Plant and Soil 179, 293-302. Ok, Y.S., Usman, A.R.A., Lee, S.S., Abd El-Azeem, S.A.M., Choi, B., Hashimoto, Y., Yang, J.E., 2011. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere 85, 677-682. Panwar, B.S., Singh, J.P., Laura, R.D., 1999. Cadmium uptake by cowpea and mungbean as affected by Cd and P application. Water Air and Soil Pollution 112, 163-169. Park, J., Kim, J.Y., Kim, K.W., 2012. Phytoremediation of soil contaminated with heavy metals using Brassica napus. Geosystem Engineering 15, 10-18. Prasad, M.N.V., 1995. Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany 35, 525-545. Putwattana, N., Kruatrachue, M., Pokethitiyook, P., Chaiyarat, R., 2010. Immobilization of cadmium in soil by cow manure and silicate fertilizer, and reduced accumulation of cadmium in sweet basil (Ocimum basilicum). Scienceasia 36, 349-354. Rhoades, J.D., 1996. Salinity: Electrical conductivity and total dissolved solids. In: Sparks et al. D.L. (Ed.), Methods of Soil Analysis, Part 3. Chemical and Microbiological Properties, Second ed., Agronomy Monograph No. 9, pp. 419-420. Rodda, M.S., Li, G., Reid, R.J., 2011. The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post-flowering. Plant and Soil 347, 105-114. Ruby, M.V., Davis, A., Nicholson, A., 1994. In-situ formation of lead phosphates in soils as a method to immobilize lead. Environmental Science & Technology 28, 646-654. Satapanajaru, T., Anurakpongsatorn, P., Pengthamkeerati, P., Boparai, H., 2008. Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air and Soil Pollution 192, 349-359. Sato, A., Takeda, H., Oyanagi, W., Nishihara, E., Murakami, M., 2010. Reduction of cadmium uptake in spinach (Spinacia oleracea L.) by soil amendment with animal waste compost. Journal of Hazardous Materials 181, 298-304. Singh, S.P., Takkar, P.N., Nayyar, V.K., 1989. Effect of Cadmium on wheat as influenced by lime and manure and its toxic level in plant and soil. International Journal of Environmental Studies 33, 59-66. Soriano-Disla, J.M., Gomez, I., Navarro-Pedreno, J., Lag-Brotons, A., 2010. Evaluation of single chemical extractants for the prediction of heavy metal uptake by barley in soils amended with polluted sewage sludge. Plant and Soil 327, 303-314. Shoemaker, H.E., Mclean, E.O., Pratt, P.E., 1961. Buffer methods for determining the lime requirement of soils with appreciate amounts of extractable aluminum. Soil Science Society of America Journal 25, 274-277. Sun, Y.P., Li, X.Q., Cao, J.S., Zhang, W.X., Wang, H.P., 2006. Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science 120, 47-56. Tagoe, S.O., Horiuchi, T., Matsui, T., 2008. Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean. Plant and Soil 306, 211-220. Taiwan EPA. 2014. Soil and groundwater pollution remediation web. http:// sgw.epa.gov.tw/public/en/index.htm Takijima, Y., Katsumi, F., 1973. Cadmium contamination of soils and rice plants caused by zinc mining: I. Production of high cadmium rice on the paddy fields in lower reaches of the mine station. soil science and plant nutrition 19, 29-38. Thomas, G.W., 1996. Soil pH and acidity. In: Sparks et al., D.L. (Ed.), Methods of Soil Analysis, Part 3. Chemical and Microbiological Properties, Second ed., Agronomy Monograph No. 9, pp. 475-490. Traina S. J., 1999. The environmental chemistry of cadmium. In: McLaughlin, M.J., Singh, B.R. (Eds), Cadmium in soil and plants., Kluwer Academic Publishers, pp.97-124. Turgut, C., Pepe, M.K., Cutright, T.J., 2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution 131, 147-154. Ure, A.M., 1996. Single extraction schemes for soil analysis and related applications. Science of the Total Environment 178, 3-10. Wang, C.B., Zhang, W.X., 1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology 31, 2154-2156. Watanabe, T., Murata, Y., Nakamura, T., Sakai, Y., Osaki, M., 2009. Effect of zero-valent iron application on cadmium uptake in rice plants grown in cadmium-contaminated soils. Journal of Plant Nutrition 32, 1164-1172. Wei, Y.T., Wu, S.C., Chou, C.M., Che, C.H., Tsai, S.M., Lien, H.L., 2010. Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study. Water Research 44, 131-140. Wu, L.H., Luo, Y.M., Xing, X.R., Christie, P., 2004. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture Ecosystems & Environment 102, 307-318. Yu, R.F., Chi, F.H., Cheng, W.P., Chang, J.C., 2014. Application of pH, ORP, and DO monitoring to evaluate chromium (VI) removal from wastewater by the nanosacle zero-valent iron (nZVI) process. Chemical Engineering Journal. Zhang, M.K., Liu, Z.Y., Wang, H., 2010. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis 41, 820-831. Zhang, W.X., 2003. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research 5, 323-332. Zhang, W.X., Wang, C.B., Lien, H.L., 1998. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today 40, 387-395. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5095 | - |
| dc.description.abstract | 水田土壤鎘污染問題普遍存在於許多亞洲國家,相較於其他微量重金屬,鎘較容易被吸收而累積於水稻植體中,進而危及稻米的食用安全。在眾多的土壤污染整治技術中,現地化學固定法為一相對成本較低且較易操作的方法;奈米零價鐵具有粒徑小與大比表面積之特性,在地下水污染整治中已被廣泛應用,但其在土壤中對於重金屬固定能力之相關研究卻較少。因此,本研究目的為探討施用奈米零價鐵於鎘污染土壤中對於水稻吸收鎘之影響,並與其他常被使用的土壤改良劑(堆肥或石灰)比較施用效果,以評估此改良劑的整治效益。盆栽試驗中使用三種鎘濃度(mg/kg)分別為2、10與20之土壤,並分別進行以下幾種改良劑添加處理:(1)對照組,(2)堆肥,施用量為40 ton/ha,(3)石灰,以提高土壤pH值至6.8,(4)0.1% (w/w)之奈米零價鐵粉與(5)0.2% (w/w)之奈米零價鐵粉。研究結果顯示,不同改良劑處理在正常鎘濃度土壤中對於水稻穀粒產量皆無顯著影響;鎘污染土壤中對照組水稻生長情形不受土壤高濃度鎘影響,然而,施用奈米零價鐵卻會使水稻生長不佳、分蘖數下降,稻藁與穀粒生質量亦隨之下降,水稻穀粒產量減產比例達15-75%,推測可能為奈米零價鐵影響土壤有效性養分或是本身毒害所致。石灰處理在所有土壤鎘濃度之下皆能降低水稻稻藁中鎘濃度,堆肥與奈米零價鐵則無顯著降低之影響。於本試驗條件下,由於盆栽長期淹水,因此即使土壤鎘濃度高達10 m/kg,所有處理糙米鎘濃度皆仍未超過衛生署所規範之食米中鎘限量標準(0.4 mg/kg);高濃度鎘污染土壤中,僅石灰的施用可顯著降低糙米鎘濃度至低於限量標準,堆肥與奈米零價鐵處理糙米鎘濃度則無顯著降低且高於限量標準。綜合以上結果,在鎘污染土壤中添加奈米零價鐵會造成水稻生長不佳,且可能由於濃縮效應使得植體中鎘濃度相對較高,因此整體而言,相較於
石灰的施用,奈米零價鐵的整治效果並效果不顯著。 | zh_TW |
| dc.description.abstract | Cadmium(Cd)contamination of paddy soils has been reported for several Asian countries. Compared to other trace metals, Cd is rather mobile in soils. Consequently, Cd is more readily taken up by rice plants, which it can be translocated into the brown rice, and might cause serious human health problems. In-situ chemical stabilization is one of the most efficient and cost-effective remediation techniques for heavy metal contamination sites. Nano zero-valent iron(NZVI)is characterized by their small particle, large specific surface and high reducing power, and it can effectively degraded the organic pollutants or stabilized inorganic toxic heavy metals. Therefore, NZVI has been widely used as one of the remediation techniques for groundwater pollution sites. However, few studies have been evaluated as the stabilization of Cd-contaminated paddy soils by using NZVI. The objectives of this study are (1) to examine the effects of NZVI application on the Cd uptake by rice grown in Cd-contaminated soil and (2) to compare the remediation effectiveness with other soil amendments (by applying lime or compost). The pot experiments were conducted with 3 levels of soil Cd concentrations (2, 10 and 20 mg/kg, sampled from the Cd-contaminated sites) and five soil amendment treatments, including (1) control, (2) by applying lime materials to control the soil pH to 6.8, (3) by applying livestock manure compost at the rate of 40 ton/ha, (4) by applying 0.1% of NVZI and (5) by applying 0.2% of NVZI. The study results showed that the high concentration of soil Cd didn’t cause toxicity of rice productivity. However, the application of NZVI had severe effects on the growth of rice plants and decreased the tiller numbers of rice and also the yields of straw and grains by 15-75%. The possible reasons were proposed as the bioavailability of soil nutrition was affected by applying NZVI or NVZI was toxic to rice production. In all 3 levels of soil Cd concentration, only applying lime materials treatment can reduce the Cd concentration of rice straws. The compost and NZVI treatments can’t significantly decrease the Cd concentration of rice straws. In this study, even the soil Cd concentration is high as 10 mg/kg, the Cd concentration of brown rice was lower than the regulation of brown rice in Taiwan (0.4 mg/kg) announced by Department of Health and Welfare of Taiwan, due to the longer period of soil flooding than farmer conventional treatment. When soil Cd concentration was high as 20 mg/kg, the Cd concentration of brown rice might exceed 0.4 mg/kg and might have high human risk. The effect of soil amendment application was similar to the results of rice straw, only the application of lime treatment can significantly decrease the Cd concentration of brown rice. The Cd concentration of brown rice in compost and NZVI treatments were all higher than the regulation of brown rice. In conclusions, the application of NZVI had toxic effects on the growth of rice plants and it might produce the Cd uptake in rice plant. Therefore, the remediation by NVZI was not effective compared with by applying lime materials. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:51:50Z (GMT). No. of bitstreams: 1 ntu-103-R01623015-1.pdf: 4014960 bytes, checksum: a17c3e30ae0c211fc292cdd0e1b35bc9 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………………………….Ⅰ
英文摘要………………………………………………………………………………Ⅲ 目錄……………………………………………………………………………………Ⅴ 表目錄…………………………………………………………………………………Ⅷ 圖目錄………………………………………………………………………………Ⅸ 第一章 前言…………………………………………………………………………1 第二章 文獻回顧…………………………………………………………………3 第一節、鎘………………………………………………………………………3 第二節、鎘污染來源與現況……………………………………………………6 第三節、鎘污染土壤之整治技術………………………………………………8 一、客土法與翻轉稀釋法……………………………………………………8 二、土壤清洗法………………………………………………………………9 三、水份管理…………………………………………………………………10 四、植生萃取法 ……………………………………………………………10 五、化學穩定法………………………………………………………………12 第四節、奈米零價鐵…………………………………………………………13 一、基本特性…………………………………………………………………13 二、土壤與地下水污染整治之應用…………………………………………15 三、作為重金屬污染土壤改良劑之可行性…………………………………17 第五節、水稻與鎘污染土壤…………………………………………………19 第三章 材料與方法…………………………………………………………………21 第一節、試驗土壤………………………………………………………………21 第二節、試驗土壤基本理化性質分析…………………………………………22 一、土壤水分含量:重量法………………………………………………22 二、土壤pH值:玻璃電極法……………………………..………………22 三、土壤質地:吸管法……………………………………………………22 四、土壤電導度:飽和土糊法……………………………………………23 五、土壤有機碳含量:Walkley-Black 濕式氧化法………………………23 六、石灰需要量:SMP法…………………………………………………24 七、土壤游離鐵、鋁含量:DCB法………………………………………24 八、土壤全量重金屬:王水法……………………………………………25 第三節、試驗處理…………………………………………………...........26 一、土壤鎘濃度…………………………………………………………26 二、施用改良劑…………………………………………………………26 第四節、盆栽試驗……………………………………………………………27 一、水稻栽培條件………………………………………………………27 二、水稻生長期間土壤化學性質監測…………………………………28 三、植體前處理…………………………………………………………29 四、植體分析:HNO3/HClO4消解法……………………………………29 五、土壤分析………………………………………………………………30 第五節、統計分析 ……………………………………………………………31 第四章 結果與討論…………………………………………………………………32 第一節、試驗土壤基本理化性質…………………………………………….32 第二節、不同改良劑處理下水稻之生長情形………………………………34 第三節、不同改良劑處理下土壤pH值與氧化還原電位之變化…………39 一、土壤氧化還原電位…………………………………………………39 二、土壤pH值…………………………………………………………43 第四節、不同改良劑處理對於水稻產量之影響…………………………….47 一、稻藁生質量…………………………………………………………47 二、穀粒產量……………………………………………………………52 第五節、不同改良劑處理下對於水稻中鎘濃度與吸收量之影響…………56 一、稻藁…………………………………………………………………56 二、糙米…………………………………………………………………60 第六節、不同改良劑處理下對於土壤性質之影響…………………………65 一、土壤pH值…………………………………………………………65 二、0.05 M EDTA可萃取性之土壤有效性鎘………………………….68 第五章 結論………………………………………………………………………….72 參考文獻……………………………………………………………………………….73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 石灰物質 | zh_TW |
| dc.subject | 鎘 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | 現地化學固定法 | zh_TW |
| dc.subject | 奈米零價鐵 | zh_TW |
| dc.subject | brown rice | en |
| dc.subject | lime materials | en |
| dc.subject | nano zero-valent iron | en |
| dc.subject | in-situ chemical stabilization | en |
| dc.subject | Cadmium | en |
| dc.title | 施用奈米零價鐵與石灰及堆肥於鎘污染土壤對水稻吸收鎘之影響 | zh_TW |
| dc.title | The Effect of Nano Zero-valent Iron, Lime, and Compost Application on Cadmium Uptake by Rice Grown in Cd
Contaminated Soils | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李達源,王尚禮,許正一 | |
| dc.subject.keyword | 鎘,水稻,現地化學固定法,奈米零價鐵,石灰物質, | zh_TW |
| dc.subject.keyword | Cadmium,brown rice,in-situ chemical stabilization,nano zero-valent iron,lime materials, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 3.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
