請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50952
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 胡星陽 | |
dc.contributor.author | Chun-Yu Hsu | en |
dc.contributor.author | 徐君毓 | zh_TW |
dc.date.accessioned | 2021-06-15T13:08:38Z | - |
dc.date.available | 2019-07-04 | |
dc.date.copyright | 2016-07-04 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-06-29 | |
dc.identifier.citation | [1] Ang, Andrew, and Geert Bekaert. 'Stock return predictability: Is it there?.'Review of Financial studies 20.3 (2007): 651-707.
[2] Asem, Ebenezer, and Gloria Y. Tian. 'Market dynamics and momentum profits.' (2011): 1549-1562. [3] Berge, Travis J., and Òscar Jordà. 'Evaluating the classification of economic activity into recessions and expansions.' American Economic Journal: Macroeconomics 3.2 (2011): 246-277. [4] Campbell, John Y., and Robert J. Shiller. 'Stock prices, earnings, and expected dividends.' The Journal of Finance 43.3 (1988): 661-676. [5] Candelon, Bertrand, Elena-Ivona Dumitrescu, and Christophe Hurlin. 'How to evaluate an early-warning system: Toward a unified statistical framework for assessing financial crises forecasting methods.' IMF Economic Review 60.1 (2012): 75-113. [6] Candelon, Bertrand, Jan Piplack, and Stefan Straetmans. 'On measuring synchronization of bulls and bears: The case of East Asia.' Journal of banking & finance 32.6 (2008): 1022-1035. [7] Chauvet, Marcelle, and Jeremy Piger. 'A comparison of the real-time performance of business cycle dating methods.' Journal of Business & Economic Statistics 26.1 (2008): 42-49. [8] Chauvet, Marcelle, and Simon Potter. 'Coincident and leading indicators of the stock market.' Journal of Empirical Finance 7.1 (2000): 87-111. [9] Chauvet, Marcelle, and Simon Potter. 'Forecasting recessions using the yield curve.' Journal of Forecasting 24.2 (2005): 77-103. [10] Chen, S. S. (2010). Do higher oil prices push the stock market into bear territory?. Energy Economics, 32(2), 490-495. [11] Chen, Shiu-Sheng. 'Predicting the bear stock market: Macroeconomic variables as leading indicators.' Journal of Banking & Finance 33.2 (2009): 211-223. [12] Chordia, Tarun, and Lakshmanan Shivakumar. 'Momentum, business cycle, and time‐varying expected returns.' The Journal of Finance 57.2 (2002): 985-1019. [13] Estrella, Arturo, and Frederic S. Mishkin. 'Predicting US recessions: Financial variables as leading indicators.' Review of Economics and Statistics 80.1 (1998): 45-61. [14] Eun, Cheol S., and Sangdal Shim. 'International transmission of stock market movements.' Journal of financial and quantitative Analysis 24.02 (1989): 241-256. [15] Fama, Eugene F., and Kenneth R. French. 'Dividend yields and expected stock returns.' Journal of financial economics 22.1 (1988): 3-25. [16] Gertler, Mark, and Cara S. Lown. 'The information in the high-yield bond spread for the business cycle: evidence and some implications.' Oxford Review of Economic Policy 15.3 (1999): 132-150. [17] Gonzalez, Liliana, et al. 'Two centuries of bull and bear market cycles.'International Review of Economics & Finance 14.4 (2005): 469-486. [18] Guidolin, Massimo, and Allan Timmermann. 'Economic implications of bull and bear regimes in UK stock and bond returns*.' The Economic Journal 115.500 (2005): 111-143. [19] Guidolin, Massimo, and Stuart Hyde. 'Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective.' Journal of Banking & Finance 36.3 (2012): 695-716. [20] Hamilton, J.D., Lin, G., 1996. Stock market volatility and the business cycle. Journal of Applied Econometrics 11, 573–593. [21] Hamilton, James D. 'Analysis of time series subject to changes in regime.' Journal of econometrics 45.1 (1990): 39-70. [22] Harding, Don, and Adrian Pagan. 'A comparison of two business cycle dating methods.' Journal of Economic Dynamics and Control 27.9 (2003): 1681-1690. [23] Harding, Don, and Adrian Pagan. 'Synchronization of cycles.' Journal of Econometrics 132.1 (2006): 59-79. [24] Inklaar, Robert, Jan Jacobs, and Ward Romp. 'Business cycle indicators: does a heap of data help.' University of Groningen CCSO WP (2003): 23-12. [25] Kauppi, Heikki, and Pentti Saikkonen. 'Predicting US recessions with dynamic binary response models.' The Review of Economics and Statistics 90.4 (2008): 777-791. [26] Kothari, Smitu P., and Jay Shanken. 'Book-to-market, dividend yield, and expected market returns: A time-series analysis.' Journal of Financial Economics 44.2 (1997): 169-203. [27] Layton, Allan P., and Masaki Katsuura. 'Comparison of regime switching, probit and logit models in dating and forecasting US business cycles.' International Journal of Forecasting 17.3 (2001): 403-417. [28] Lee, Wei-Ming, Shue-Jen Wu, and Chi-Tai Huang. 'Predicting Bear Markets of the TAJEX and Industry Indices in Taiwan.' Taipei Economic Inquiry 51.2 (2015): 171. [29] Lin, Wen-Ling, Robert F. Engle, and Takatoshi Ito. 'Do bulls and bears move across borders? International transmission of stock returns and volatility.'Review of Financial Studies 7.3 (1994): 507-538. [30] Liu, Wei Wendy, Bruce G. Resnick, and Gary L. Shoesmith. 'Market timing of international stock markets using the yield spread.' Journal of Financial Research 27.3 (2004): 373-391. [31] Maheu, John M., and Thomas H. McCurdy. 'Identifying bull and bear markets in stock returns.' Journal of Business & Economic Statistics 18.1 (2000): 100-112. [32] Ng, Serena, and Pierre Perron. 'Lag length selection and the construction of unit root tests with good size and power.' Econometrica 69.6 (2001): 1519-1554. [33] Nyberg, Henri. 'Dynamic probit models and financial variables in recession forecasting.' Journal of Forecasting 29.1‐2 (2010): 215-230. [34] Nyberg, Henri. 'Predicting bear and bull stock markets with dynamic binary time series models.' Journal of Banking & Finance 37.9 (2013): 3351-3363. [35] Pagan, Adrian R., and Kirill A. Sossounov. 'A simple framework for analysing bull and bear markets.' Journal of Applied Econometrics 18.1 (2003): 23-46. [36] Pesaran, M. Hashem, and Allan G. Timmermann. 'A generalization of the non-parametric Henriksson-Merton test of market timing.' Economics Letters 44.1 (1994): 1-7. [37] Rapach, David E., Mark E. Wohar, and Jesper Rangvid. 'Macro variables and international stock return predictability.' International journal of forecasting 21.1 (2005): 137-166. [38] Resnick, Bruce G., and Gary L. Shoesmith. 'Using the yield curve to time the stock market.' Financial Analysts Journal 58.3 (2002): 82-90. [39] Sadorsky, Perry. 'Oil price shocks and stock market activity.' Energy Economics21.5 (1999): 449-469. [40] Wu, Shue-Jen, and Wei-Ming Lee. 'Predicting the US bear stock market using the consumption-wealth ratio.' Economics Bulletin 32.4 (2012): 3174-3181. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50952 | - |
dc.description.abstract | 有別於過去國內文獻在預測台股熊市時普遍使用的靜態機率模型,本文係利用動態機率模型輔以多種不同屬性的預測變數,以期提升對台股熊市預測的準確性。在Nyberg (2010)及Kauppi and Saikkonen(2008)的研究結果已證實動態機率模型不論是在樣本內或樣本外,其預測能力優於靜態機率模型。本文同樣利用動態機率模型對台股熊市進行實證,最後也驗證了此一論點,惟動態模型勝出的程度會因單變數或多變數模型的採用而有不同。再者,以往文獻慣以使用國內總體經濟指標(例如利率、匯率、通膨率、貨幣與財政政策指標等)作為熊市機率的預測變數,本文則是額外探討了一些股市活動指標和國際總經變數與商品價格指標,並從中發現美國長短天期利差與M&A件數在短期(1個月)到長期(12個月)均具有顯著的台股熊市預測力。而大盤報酬率、股市本益比變動、股市股利殖利率變動、美股道瓊工業指數變動、投資投機等級債券利差、MSCI新興市場指數變動等變數對短天期(3個月)內發生之熊市具預測力。另外,分析師評等則是在較長天期(6到12個月)具有預測力。本文利用以上結果所建構出的動態多變數機率模型成功提升了對台股熊市的解釋能力。最後,本文也運用機率模型設計出一套簡易的市場擇時交易策略,並在歷史數據實證下得出優於大盤的平均月報酬。但若要顯著優於大盤,則運用預測模型得出的熊市機率來調整無風險性資產與股票間的比重配置會比較有機會實現高於大盤的報酬率。不過,動態模型相較於靜態模型,在此交易績效實證下並沒有帶來顯著較高的報酬率。 | zh_TW |
dc.description.abstract | Different from the most commonly used static model for bear market forecasting in Taiwan, this paper employed dynamic probit model with multivariate predictive variables in order to enhance the predictability of bear markets of the TAIEX. Empirical research in Nyberg (2010) and Kauppi and Saikkonen (2008) have already proved that the predictive power of dynamic probit models is higher than static probit model, regardless of in-sample or out-of-sample results. After our examinations targeting Taiwan stock market, we reached the same conclusions as they did, though the extent of superiority of dynamic models depends on whether a univariate or multivariate model is adopted. Moreover, besides those domestic macroeconomic variables, which have been fully discussed in market forecasting thesis, this paper considered more diversified variables such as stock market activity related indicators and international macroeconomic & other commodity price indicators. We found that US term spread and the number of M&A are good predictors in 1 month to 12 months forecasting scope, while TAIEX historical return, the change of TAIEX PER, the change of TAIEX dividend yield, the change of Dow Jones index, yield spread between investment grade-high yield bonds, and the change of MSCI EM index proved to be significant in short term bear market forecasting. As for half-to-one year forecasting period, ratings from equity research analysts would be a better indicator. Our design of dynamic probit models embedded with multivariate predictive indicators successfully improve the explanatory power for bear market forecasting if comparing with traditional static univariate predicting models. Finally, we developed a market timing trading strategy base on our optimal predicting models and tested it with historical data, revealing an average monthly return that beat the passive buy-and-hold strategy. The results could be more pronounced once a bear market probability weighted asset allocation rule is followed. However, we should be noted that dynamic models failed to outperform static models in providing higher return under this trading test. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:08:38Z (GMT). No. of bitstreams: 1 ntu-105-R03723011-1.pdf: 3229037 bytes, checksum: 16cd2a42dac2b6b7849d4fe376799fd4 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書 ........................................................................................................... i
摘要 .................................................................................................................................. ii Abstract ............................................................................................................................ iii 目錄 .................................................................................................................................. v 圖目錄 ............................................................................................................................. vi 表目錄 ............................................................................................................................ vii 第ㄧ章 前言 .................................................................................................................... 1 1.1 研究動機與目的 ............................................................................................... 1 1.2 文獻回顧 ........................................................................................................... 2 第二章 研究方法 ............................................................................................................ 8 2.1 牛熊市的定義與判定方法 ............................................................................... 8 2.2 機率模型與預測 ............................................................................................. 13 2.2.1靜態與動態機率模型 ........................................................................... 13 2.2.2模型預測過程 ....................................................................................... 15 2.2.3模型預測的配適度衡量 ....................................................................... 17 2.2.4市場擇時策略 ....................................................................................... 19 第三章 樣本蒐集與整理 .............................................................................................. 20 3.1 預測變數選擇 ................................................................................................. 20 3.2 預測變數之樣本期間與處理 ......................................................................... 23 3.3 預測變數之敘述統計 ..................................................................................... 25 第四章 研究結果 .......................................................................................................... 28 4.1 樣本內檢驗結果 ............................................................................................. 28 4.2 樣本外預測結果 ............................................................................................. 38 4.3 市場擇時交易策略績效評估 ......................................................................... 40 第五章 結論與建議 ...................................................................................................... 42 參考文獻 ........................................................................................................................ 44 | |
dc.language.iso | zh-TW | |
dc.title | 以動態機率模型預測台股熊市之發生 | zh_TW |
dc.title | Predicting Bear Stock Markets in Taiwan with Dynamic Probit Models | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 莊文議,林岳祥 | |
dc.subject.keyword | 動態模型,Probit模型,熊市預測,市場擇時,總體經濟, | zh_TW |
dc.subject.keyword | dynamic model,probit model,bear market forecasting,market-timing strategy,macroeconomics, | en |
dc.relation.page | 49 | |
dc.identifier.doi | 10.6342/NTU201600553 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-06-29 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
顯示於系所單位: | 財務金融學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 3.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。