Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50949
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉如熹(Ru-Shi Liu)
dc.contributor.authorI-Jung Leeen
dc.contributor.author李伊容zh_TW
dc.date.accessioned2021-06-15T13:08:27Z-
dc.date.available2026-12-31
dc.date.copyright2016-09-13
dc.date.issued2016
dc.date.submitted2016-06-29
dc.identifier.citation[1] Ineke, M., 'Nanotechnology in Europe: Scientific Trends and Organizational Dynamics', Nanotech. 1999, 10, 1.
[2] Gleiter, H., 'Nanostructured Materials: Basic Concepts and Microstructure', Acta Mater. 2000, 48, 1.
[3] Isaac, O. J.; Olivia, T.; Julia, L.; Victor, F. P., 'Engineered Nonviral Nanocarriers for Intracellular Gene Delivery Applications', Biomed. Mater. 2012, 7, 054106.
[4] Chen, H. M.; Liu, R. S., 'Architecture of Metallic Nanostructures: Synthesis Strategy and Specific Applications', J. Phys. Chem. C 2011, 115, 3513.
[5] Baletto, F.; Ferrando, R., 'Structural Properties of Nanoclusters: Energetic, Thermodynamic, and Kinetic Effects', Rev. Mod. Phys. 2005, 77, 371.
[6] Roduner, E., 'Size Matters: Why Nanomaterials Are Different', Chem. Soc. Rev. 2006, 35, 583.
[7] Mukhopadhyay, A.; Basu, B., 'Consolidation – Microstructure – Property Relationships in Bulk Nanoceramics and Ceramic Nanocomposites: a Review', Mater. Rev. 2007, 52, 257.
[8] Buffat, P.; Borel, J. P., 'Size Effect on the Melting Temperature of Gold Particles', Phys. Rev. A 1976, 13, 2287.
[9] Li, Y.; Boone, E.; El-Sayed, M. A., 'Size Effects of PVP−Pd Nanoparticles on the Catalytic Suzuki Reactions in Aqueous Solution', Langmuir 2002, 18, 4921.
[10] Chao, M. C.; Lin, H. P.; Sheu, H. S.; Mou, C. Y., 'A Study of Morphology of Mesoporous Silica SBA-15', In Stud. Surf. Sci. Catal. 2002, 141, 387.
[11] Kubo, R., 'Electronic Properties of Metallic Fine Particles I', J. Phys. Soc. Jpn. 1962, 17, 975.
[12] Daniel, M. C.; Astruc, D., 'Gold Nanoparticles:  Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology', Chem. Rev. 2004, 104, 293.
[13] Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X., ' Upconversion Nanoparticles in Biological Labeling, Imaging, and Therapy ', Analyst 2010, 135, 1839.
[14] Barroso, M. M., 'Quantum Dots in Cell Biology', J. Histochem. Cytochem. 2011, 59, 237.
[15] Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., ' Quantum dot Bioconjugates for Imaging, Labelling and Sensing ', Nat. Mater. 2005, 4, 435.
[16] Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S., 'Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics', Science 2005, 307, 538.
[17] Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N., 'Probing the Cytotoxicity of Semiconductor Quantum Dots', Nano Lett. 2004, 4, 11.
[18] Song, K.; Kong, X.; Liu, X.; Zhang, Y.; Zeng, Q.; Tu, L.; Shi, Z.; Zhang, H., ' Aptamer Optical Biosensor without Bio-breakage Using Upconversion Nanoparticles as Donors ', Chem. Commun. 2012, 48, 1156.
[19] Wang, F.; Liu, X., 'Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF 4 Nanoparticles', J. Am. Chem. Soc. 2008, 130, 5642.
[20] Van der Ende, B. M.; Aarts, L.; Meijerink, A., 'Lanthanide Ions as Spectral Converters for Solar Cells', Phys. Chem. Chem. Phys. 2009, 11, 11081.
[21] Wang, F.; Liu, X., 'Recent Advances in the Chemistry of Lanthanide-doped Upconversion Nanocrystals', Chem. Soc. Rev. 2009, 38, 976.
[22] Dong, H.; Sun, L. D.; Yan, C. H., 'Energy Transfer in Lanthanide Upconversion Studies for Extended Optical Applications', Chem. Soc. Rev. 2015, 44, 1608.
[23] Wang, G.; Peng, Q.; Li, Y., 'Upconversion Luminescence of Monodisperse CaF 2 :Yb 3+ /Er 3+ Nanocrystals', J. Am. Chem. Soc. 2009, 131, 14200.
[24] Chen, D.; Lei, L.; Zhang, R.; Yang, A.; Xu, J.; Wang, Y., 'Intrinsic Single-band Upconversion Emission in Colloidal Yb/Er(Tm):Na 3 Zr(Hf)F 7 nanocrystals', Chem. Commun. 2012, 48, 10630.
[25] Wang, Y. F.; Liu, G. Y.; Sun, L. D.; Xiao, J. W.; Zhou, J. C.; Yan, C. H., 'Nd 3+ -Sensitized Upconversion Nanophosphors: Efficient In Vivo Bioimaging Probes with Minimized Heating Effect', ACS Nano 2013, 7, 7200.
[26] Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y., 'Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles', Angew. Chem. Int. Ed. 2005, 44, 6054.
[27] Wang, C.; Cheng, L.; Liu, Z., 'Drug Delivery with Upconversion Nanoparticles for Multi-functional Targeted Cancer Cell Imaging and Therapy', Biomaterials 2011, 32, 1110.
[28] Chen, G.; Shen, J.; Ohulchanskyy, T. Y.; Patel, N. J.; Kutikov, A.; Li, Z.; Song, J.; Pandey, R. K.; Å gren, H.; Prasad, P. N.; Han, G., '(α-NaYbF 4 :Tm 3+ )/CaF 2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging', ACS Nano 2012, 6, 8280.
[29] Tian, G.; Gu, Z.; Zhou, L.; Yin, W.; Liu, X.; Yan, L.; Jin, S.; Ren, W.; Xing, G.; Li, S.; Zhao, Y., 'Mn 2+ Dopant-Controlled Synthesis of NaYF 4 :Yb/Er Upconversion Nanoparticles for in Vivo Imaging and Drug Delivery', Adv. Mater. 2012, 24, 1226.
[30] Shan, J.; Budijono, S. J.; Hu, G.; Yao, N.; Kang, Y.; Ju, Y.; Prud'homme, R. K., 'Pegylated Composite Nanoparticles Containing Upconverting Phosphors and meso-Tetraphenyl porphine (TPP) for Photodynamic Therapy', Adv. Funct. Mater. 2011, 21, 2488.
[31] Nam, S. H.; Bae, Y. M.; Park, Y. I.; Kim, J. H.; Kim, H. M.; Choi, J. S.; Lee, K. T.; Hyeon, T.; Suh, Y. D., 'Long-Term Real-Time Tracking of Lanthanide Ion Doped Upconverting Nanoparticles in Living Cells', Angew. Chem. Int. Ed. 2011, 50, 6093.
[32] Zhan, Q.; Qian, J.; Liang, H.; Somesfalean, G.; Wang, D.; He, S.; Zhang, Z.; Andersson-Engels, S., 'Using 915 nm Laser Excited Tm 3+ /Er 3+ /Ho 3+ -Doped NaYbF 4 Upconversion Nanoparticles for In Vitro and Deeper In Vivo Bioimaging without Overheating Irradiation', ACS Nano 2011, 5, 3744.
[33] Xie, X.; Liu, X., 'Photonics: Upconversion Goes Broadband', Nat. Mater. 2012, 11, 842.
[34] Wang, R.; Li, X.; Zhou, L.; Zhang, F., 'Epitaxial Seeded Growth of Rare-Earth Nanocrystals with Efficient 800 nm Near-Infrared to 1525 nm Short-Wavelength Infrared Downconversion Photoluminescence for In Vivo Bioimaging', Angew. Chem. Int. Ed. 2014, 53, 12086.
[35] Weissleder, R., 'A Clearer vision for In Vivo Imaging', Nat. Biotech. 2001, 19, 316.
[36] Chen, G.; Ohulchanskyy, T. Y.; Liu, S.; Law, W. C.; Wu, F.; Swihart, M. T.; Å gren, H.; Prasad, P. N., 'Core/Shell NaGdF 4 :Nd 3+ /NaGdF 4 Nanocrystals with Efficient Near-Infrared to Near-Infrared Downconversion Photoluminescence for Bioimaging Applications', ACS Nano 2012, 6, 2969.
[37] McNichols, R. J.; Gowda, A.; Kangasniemi, M.; Bankson, J. A.; Price, R. E.; Hazle, J. D., 'MR Thermometry-based Feedback Control of Laser Interstitial Thermal Therapy at 980 nm', Lasers Surg. Med. 2004, 34, 48.
[38] Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., 'New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging', Chem. Rev. 2010, 110, 2620.
[39] Wu, X.; Lee, H.; Bilsel, O.; Zhang, Y.; Li, Z.; Chen, T.; Liu, Y.; Duan, C.; Shen, J.; Punjabi, A.; Han, G., 'Tailoring Dye-sensitized Upconversion Nanoparticles Excitation Bands towards Excitation Wavelength Selective Imaging'. Nanoscale 2015, 7, 18424.
[40] Kushida, T.; Marcos, H. M.; Geusic, J. E., 'Laser Transition Cross Section and Fluorescence Branching Ratio for Nd 3+ in Yttrium Aluminum Garnet', Phys. Rev. 1968, 167, 289.
[41] Shen, J.; Chen, G.; Vu, A. M.; Fan, W.; Bilsel, O. S.; Chang, C. C.; Han, G., 'Engineering the Upconversion Nanoparticle Excitation Wavelength: Cascade Sensitization of Tri-doped Upconversion Colloidal Nanoparticles at 800 nm', Adv. Opt. Mater. 2013, 1, 644.
[42] Boyer, J. C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A., 'Synthesis of Colloidal Upconverting NaYF 4 Nanocrystals Doped with Er 3+ , Yb 3+ and Tm 3+ , Yb 3+ via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors', J. Am. Chem. Soc. 2006, 128, 7444.
[43] Wang, M.; Abbineni, G.; Clevenger, A.; Mao, C.; Xu, S., 'Upconversion Nanoparticles: Synthesis, Surface Modification, and Biological Applications', Nanomedicine 2011, 7, 710.
[44] Bogdan, N.; Rodriguez, E. M.; Sanz-Rodriguez, F.; Iglesias de la Cruz, M. a. C.; Juarranz, A.; Jaque, D.; Sole, J. G.; Capobianco, J. A., 'Bio-functionalization of Ligand-free Upconverting Lanthanide Doped Nanoparticles for Bio-imaging and Cell Targeting', Nanoscale 2012, 4, 3647.
[45] Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X., 'Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics', Chem. Rev. 2014, 114, 5161.
[46] Yi, G. S.; Chow, G. M., 'Synthesis of Hexagonal-Phase NaYF 4 :Yb,Er and NaYF 4 :Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence', Adv. Func. Mater. 2006, 16, 2324.
[47] Chen, Z.; Chen, H.; Hu, H.; Yu, M.; Li, F.; Zhang, Q.; Zhou, Z.; Yi, T.; Huang, C., 'Versatile Synthesis Strategy for Carboxylic Acid−functionalized Upconverting Nanophosphors as Biological Labels', J. Am. Chem. Soc. 2008, 130, 3023.
[48] Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A., 'Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles', Nano Lett. 2011, 11, 835.
[49] Qian, H. S.; Zhang, Y., 'Synthesis of Hexagonal-Phase Core−Shell NaYF 4 Nanocrystals with Tunable Upconversion Fluorescence', Langmuir 2008, 24, 12123.
[50] Dou, Q.; Idris, N. M.; Zhang, Y., 'Sandwich-structured Upconversion Nanoparticles with Tunable Color for Multiplexed Cell Labeling', Biomaterials 2013, 34, 1722.
[51] Chen, X.; Peng, D.; Ju, Q.; Wang, F., 'Photon Upconversion in Core-Shell Nanoparticles', Chem. Soc. Rev. 2015, 44, 1318.
[52] Auzel, F., 'Upconversion and Anti-Stokes Processes with f and d Ions in Solids', Chem. Rev. 2004, 104, 139.
[53] Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J. O.; Schlogl, R.; Carlsson, J. M., 'Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and Their Use as Metal-free Catalysts', J. Mater. Chem. 2008, 18, 4893.
[54] Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S. A. C., 'Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis', ACS App. Mater. & Inter. 2014, 6, 16449.
[55] Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M., 'A Metal-free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light', Nat. Mater. 2009, 8, 76.
[56] Niu, P.; Yin, L. C.; Yang, Y. Q.; Liu, G.; Cheng, H. M., 'Increasing the Visible Light Absorption of Graphitic Carbon Nitride (Melon) Photocatalysts by Homogeneous Self-Modification with Nitrogen Vacancies', Adv. Mater. 2014, 26, 8046.
[57] Martin, D. J.; Qiu, K.; Shevlin, S. A.; Handoko, A. D.; Chen, X.; Guo, Z.; Tang, J., 'Highly Efficient Photocatalytic H 2 Evolution from Water using Visible Light and Structure-Controlled Graphitic Carbon Nitride', Angew. Chem. Int. Ed. 2014, 53, 9240.
[58] Lin, L. S.; Cong, Z. X.; Li, J.; Ke, K. M.; Guo, S. S.; Yang, H. H.; Chen, G. N., 'Graphitic-phase C3N4 Nanosheets as Efficient Photosensitizers and pH-responsive Drug Nanocarriers for Cancer Imaging and Therapy', J. Mater. Chem. B 2014, 2, 1031.
[59] Hamilton, A.; Hortobagyi, G., 'Chemotherapy: What Progress in the Last 5 Years?', J. Clin. Oncol. 2005, 23, 1760.
[60] Silva, Zenildo S.; Bussadori, Sandra K.; Fernandes, K. Porta S.; Huang, Y. Y.; Hamblin, Michael R., 'Animal Models for Photodynamic Therapy (PDT)', Biosci. Rep. 2015, 35.
[61] Kato, H., 'Photodynamic Therapy for Lung Cancer—A Review of 19 Years' Experience', J. Photochem. Photobiol. B 1998, 42, 96.
[62] Vij, R.; Triadafilopoulos, G.; Owens, D. K.; Kunz, P.; Sanders, G. D., 'Cost-effectiveness of Photodynamic Therapy for High-grade Dysplasia in Barrett's Esophagus', Gastrointest. Endosc. 2004, 60, 739.
[63] Skyrme, R. J.; French, A. J.; Datta, S. N.; Allman, R.; Mason, M. D.; Matthews, P. N., 'A Phase-1 Study of Sequential Mitomycin C and 5–aminolaevulinic acid-mediated Photodynamic Therapy in Recurrent Superficial Bladder Carcinoma', BJU Int. 2005, 95, 1206.
[64] Schuller, D. E.; McCaughan, J. S.; Jr; Rock, R. P., 'Photodynamic Therapy in Head and Neck Cancer', Arch. Otolaryngol. 1985, 111, 351.
[65] Rhodes, L. E.; de Rie, M.; Enström, Y., 'Photodynamic Therapy using Topical Methyl Aminolevulinate vs Surgery for Nodular Basal Cell Carcinoma: Results of a Multicenter Randomized Prospective Trial', Arch. Dermatol. 2004, 140, 17.
[66] Oseroff, A. R.; Blumenson, L. R.; Wilson, B. D.; Mang, T. S.; Bellnier, D. A.; Parsons, J. C.; Frawley, N.; Cooper, M.; Zeitouni, N.; Dougherty, T. J., 'A Dose Ranging Study of Photodynamic Therapy with Porfimer Sodium (Photofrin® ) for Treatment of Basal Cell Carcinoma ', Lasers Surg. Med. 2006, 38, 417.
[67] Qian, H. S.; Guo, H. C.; Ho, P. C. L.; Mahendran, R.; Zhang, Y., 'Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy', Small 2009, 5, 2285.
[68] Selvasekar, C. R.; Birbeck, N.; McMillan, T.; Wainwright, M.; Walker, S. J., 'Photodynamic Therapy and the Alimentary Tract', Aliment. Pharmacol. Ther. 2001, 15, 899.
[69] Frangioni, J. V., 'In Vivo Near-Infrared Fluorescence Imaging', Curr. Opin. Chem. Biol. 2003, 7, 626.
[70] Wang, Y.; Wang, H.; Liu, D.; Song, S.; Wang, X.; Zhang, H., 'Graphene Oxide Covalently Grafted Upconversion Nanoparticles for Combined NIR Mediated Imaging and Photothermal/photodynamic Cancer Therapy', Biomaterials 2013, 34, 7715.
[71] Wu, S.; Han, G.; Milliron, D. J.; Aloni, S.; Altoe, V.; Talapin, D. V.; Cohen, B. E.; Schuck, P. J., 'Non-blinking and Photostable Upconverted Luminescence from Single Lanthanide-doped Nanocrystals', Proc. Natl. Acad. Sci. 2009, 106, 10917.
[72] Yu, M.; Li, F.; Chen, Z.; Hu, H.; Zhan, C.; Yang, H.; Huang, C., 'Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors', Anal. Chem. 2009, 81, 930.
[73] Lim, S. F.; Riehn, R.; Ryu, W. S.; Khanarian, N.; Tung, C. K.; Tank, D.; Austin, R. H., 'In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis elegans', Nano Lett. 2006, 6, 169.
[74] Idris, N. M.; Gnanasammandhan, M. K.; Zhang, J.; Ho, P. C.; Mahendran, R.; Zhang, Y., 'In Vivo Photodynamic Therapy Using Upconversion Nanoparticles as Remote-controlled Nanotransducers', Nat. Med. 2012, 18, 1580.
[75] Lucky, S. S.; Muhammad Idris, N.; Li, Z.; Huang, K.; Soo, K. C.; Zhang, Y., 'Titania Coated Upconversion Nanoparticles for Near-Infrared Light Triggered Photodynamic Therapy', ACS Nano 2015, 9, 191.
[76] Fultz, B.; Howe, J., 'The TEM and Its Optics', In Transmission Electron Microscopy and Diffractometry of Materials, Springer Berlin Heidelberg: 2008; Chapter 2, 61.
[77] Williams, D. B.; Carter, C. B., 'The Instrument', In Transmission Electron Microscopy, Springer US: 2009; Chapter 8, 141.
[78] 林麗娟 'X 光繞射原理及其應用', 工業材料 1994, 86, 100.
[79] 鄭信民; 林麗娟 'X 光繞射應用簡介', 工業材料 2002, 181, 100.
[80] Skook D. A.; West D. M.; Holler J. F.; Crouch S. R. 'Ultraviolet–Visible Spectroscopy', Fundamentals of Analytic Chemistry 8 th edition, 2004, 786.
[81] Hersberg G. 'Molecular Spectra and Molecular Structure II', Infrared and Roman Spectra of Polyatomic Molecules, Van Nostrand, 1945, 632.
[82] Skook D. A.; Holler J. F.; Crouch S. R., 'Molecular Luminescence Spectrometry', In Principles of Instrumental Analysis, 6 th edition, 1992, 399.
[83] http://www.bioma-tek.com/tw/technology.php?act=view&no=34 (Bio Materials Analysis Technology)
[84] 美嘉儀器-共軛焦小組, 'LEICA Confocal Laser Scanning Microscope Technical & Application', 2000, 3.
[85] Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X., Liu, X., 'Tuning Upconversion Through Energy Migration in Core–Shell Nanoparticles'. Nat. Mater. 2011, 10, 968.
[86] Wang, G. F.; Peng, Q.; Li, Y. D., 'Lanthanide-Doped Nanocrystals: Synthesis, Optical-Magnetic Properties, and Applications', Accounts Chem Res. 2011, 44, 322.
[87] Kramer, K. W.; Biner, D.; Frei, G.; Gudel, H. U.; Hehlen, M. P.; Luthi, S. R., 'Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors', Chem. Mater. 2004, 16, 1244.
[88] Li, C.; Quan, Z.; Yang, J.; Yang, P.; Lin, J., 'Highly Uniform and Monodisperse β-NaYF 4 :Ln 3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals:  Hydrothermal Synthesis and Luminescent Properties', Inorg. Chem. 2007, 46, 6329.
[89] Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G., 'Simultaneous Phase and Size Control of Upconversion Nanocrystals Through Lanthanide Doping', Nature 2010, 463, 1061.
[90] Barman, S.; Sadhukhan, M., 'Facile Bulk Production of Highly Blue Fluorescent Graphitic Carbon Nitride Quantum Dots and Their Application as Highly Selective and Sensitive Sensors for the Detection of Mercuric and Iodide Ions in Aqueous Media', Mater. Chem. 2012, 22, 21832.
[91] Wang, W.; Yu, J. C.; Shen, Z.; Chan, D. K. L.; Gu, T., 'g-C 3 N 4 Quantum Dots: Direct Synthesis, Upconversion Properties and Photocatalytic Application', Chem. Commun. 2014, 50, 10148.
[92] Zhou, J.; Yang, Y.; Zhang, C. Y., 'A Low-Temperature Solid-Phase Method to Synthesize Highly Fluorescent Carbon Nitride Dots with Tunable Emission', Chem. Commun. 2013, 49, 8605.
[93] Ge, L.; Zuo, F.; Liu, J.; Ma, Q.; Wang, C.; Sun, D.; Bartels, L.; Feng, P., 'Synthesis and Efficient Visible Light Photocatalytic Hydrogen Evolution of Polymeric g-C3N4 Coupled with CdS Quantum Dots', Phys. Chem. C 2012, 116, 13708.
[94] Ma, T. Y.; Tang, Y.; Dai, S.; Qiao, S. Z., 'Proton-Functionalized Two-Dimensional Graphitic Carbon Nitride Nanosheet: An Excellent Metal-/Label-Free Biosensing Platform', Small 2014, 10, 2382.
[95] Bogdan, N.; Vetrone, F.; Ozin, G. A.; Capobianco, J. A., 'Synthesis of Ligand-Free Colloidally Stable Water Dispersible Brightly Luminescent Lanthanide-Doped Upconverting Nanoparticles', Nano Lett. 2011, 11, 835.
[96] Hartono, S. B.; Gu, W.; Kleitz, F.; Liu, J.; He, L.; Middelberg, A. P.; Yu, C.; Lu, G. Q.; Qiao, S. Z., 'Poly-L-Lysine Functionalized Large Pore Cubic Mesostructured Silica Nanoparticles as Biocompatible Carriers for Gene Delivery', ACS nano. 2012, 6, 2104.
[97] Perelman, A.; Wachtel, C.; Cohen, M.; Haupt, S.; Shapiro, H.; Tzur, A., 'JC-1: Alternative Excitation Wavelengths Facilitate Mitochondrial Membrane Potential Cytometry', Cell Death Dis. 2012, 3, 430.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50949-
dc.description.abstract據近年衛福部統計,惡性腫瘤已多年蟬聯國人死亡率之首,其次為心臟疾病與腦血管疾病,故癌症之預防、診斷與治療已成為目前醫療重大課題之一。現今之癌症治療方法,仍以外科手術切除、化學治療與放射線治療等為主,但治療成效仍有改善空間。
故近年來,人類正積極研究新型輔佐性癌症療法,其中尤以光動力治療備受矚目,因其相較於傳統療法具低侵襲性、低副作用與可選擇性誘導腫瘤壞死之優點 。 本 研 究 主 要 為 合 成 鑭 系 元 素 摻 雜 之 上 轉 換 奈 米 粒 子 (lanthanide-doped upconversion nanoparticles; UCNPs),並以石墨相氮化碳量子點(graphitic-carbon nitride quantum dots; g-C3N4 )為光感藥物之複合材料應用於近紅外光驅動之光動力治療,其中以高溫共沉澱法製備上轉換奈米粒子,並以鹽酸溶液去除表面配體轉成水相,進一步將聚賴氨酸(poly-L-lysine; PLL)修飾於材料表面使其帶正電,爾後以靜電組裝作用與氮化碳量子點結合。 本研究乃基於上轉換之特殊光學特性,可以連續波近紅外光雷射激發上轉換奈米粒子,將低能量之近紅外光轉換為高能量紫外光與可見光波段之螢光,而其所釋放之紫外光將誘導表面之 g-C3N4 ,於 365 nm 有最佳吸收,並進而釋放出綠色螢光與活性氧分子(reactive oxygen species; ROS)。再者,藉由調控不同濃度之PLL,使最大量之 g-C 3N4 光感藥物承載於上轉換粒子表面,可有效地將氧氣轉換為具細胞毒性之活性氧分子,誘導腫瘤細胞壞死與凋亡,達良好之光動力治療效果。
zh_TW
dc.description.abstractBased on the latest statistics from the Ministry of Health and Welfare, malignant tumor continues to be on top of disease, and then followed by the heart disease and cerebrovascular disease, so the diagnosis and medical treatment has become one of the major issues. Nowadays, cancer treatments still focus on surgical resection, chemotherapy and radiation therapy, but it still can be improved for the more effective treatment.
As a result, human beings have continued to investigate novel adjuvant cancer therapy in recent years, photodynamic therapy (PDT) is now becoming a widely used medical tool. Compared with the traditional therapy, photodynamic therapy is recognized as a minimally invasive procedure, also has little side effect and can selectively lead to tumor necrosis.
The purposes of this research is to fabricate a lanthanide-doped upconversion nanoparticles (UCNPs) nanocomposite by combining with graphitic carbon nitride (g-C 3 N 4 ) photosensitizer for near-infrared (NIR) light mediated PDT application. First, we synthesized upconversion nanoparticles by high temperature co-precipitation method, and then the ligand on the surface were removed via the treatment with hydrochloric acid to obtain water-dispersible nanoparticles. Furthermore, ligand-free upconversion nanoparticles modified with poly-L-lysine (PLL) in order to render the positive-charged group which can allow the attachment of the g-C 3N4 by electrostatic assembling.
Through the excitation of continuous wave NIR laser, upconversion nanoparticles can convert the low-energy NIR light to high energy ultraviolet (UV) or visible light. Owing to this unique optical property of upconversion nanoparticles, the UV light will further photoexcites g-C3N4 at 365 nm, emit the green light and release reaction oxygen species (ROS). Meanwhile, we also modified different concentration of PLL to achieve a moderate condition for high g-C3N4 loading and ensuring maximum energy transfer from UCNPs to g-C3N4 photosensitizer, so as to generate a significant amount of ROS, which can result in tumor cell necrosis and apoptosis for efficient PDT effect.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:08:27Z (GMT). No. of bitstreams: 1
ntu-105-R03223209-1.pdf: 9913354 bytes, checksum: b0d068ba124d439b1e7df2fc8df9aeb3 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 奈米材料之簡介 1
1.2 奈米材料之定義與特性 1
1.2.1 小尺寸效應 3
1.2.2 表面效應 4
1.2.3 量子尺寸效應 5
1.3 上轉換奈米粒子之簡介 5
1.3.1上轉換奈米粒子之組成 7
1.3.2.1 主體材料 8
1.3.2.2 敏化劑 9
1.3.2.3 活化劑 10
1.3.3 980 nm與808 nm激發之上轉換奈米粒子 11
1.3.4 上轉換奈米粒子之表面修飾 13
1.3.5 上轉換奈米粒子之核殼結構 14
1.3.6 上轉換奈米粒子之放光機制 15
1.3.6.1 激發態吸收 15
1.3.6.2 能量轉移上轉換 16
1.3.6.3 光子雪崩 16
1.4 石墨相氮化碳之簡介 17
1.5 光動力治療 19
1.5.1 光感物質 21
1.6上轉換奈米粒子應用之文獻回顧 22
1.7 研究動機與目的 25
第二章 實驗步驟與儀器分析原理 27
2.1 化學藥品 27
2.2 實驗步驟 29
2.2.1 氮化碳量子點之合成 29
2.2.2 NaYF4:Yb/Tm上轉換奈米粒子之合成 29
2.2.3 NaYF4:Yb/Tm@NaYF4:Yb/Nd之上轉換奈米粒子合成法 30
2.2.4 以聚賴氨酸修飾之上轉換奈米粒子合成法(NaYF4:Yb/Tm-PLL) 31
2.2.5 氮化碳與上轉換奈米粒子之複合材料合成法 (NaYF4:Yb/Tm-PLL@g-C3N4) 32
2.2.6 細胞毒性之測試(cytotoxicity assay) 32
2.2.7 細胞顯影 33
2.2.8 溶液與細胞中之單基態氧(singlet oxygen species; ROS)測試 33
2.2.9 光動力治療之測試 34
2.3 儀器原理 35
2.3.1 穿透式電子顯微鏡(transmission electron microscope; TEM) 35
2.3.2 X光粉末繞射儀(X-ray powder diffraction microscopy; XRD) 38
2.3.3 紫外光/可見光吸收光譜儀(UV/Vis absorption spectroscopy) 40
2.3.3.1 π、σ與n電子間之躍遷 42
2.3.3.2 電荷轉移吸收 43
2.3.3.3 d軌域與f軌域間電子之躍遷 43
2.3.4 傅立葉轉換紅外光譜儀(Fourier-transform infrared spectrometer) 44
2.3.5 光激發放光光譜儀(photoluminescence spectrometer) 47
2.3.5.1 振動弛豫(vibrational relaxation) 49
2.3.5.2 內部轉換(internal conversion) 49
2.3.5.3 螢光發射(fluorescence emission) 50
2.3.5.4 系統間跨越(intersystem crossing) 50
2.3.5.5 磷光發射(phosphorescence emission) 50
2.3.5.6 外部轉換(external conversion) 51
2.3.6 介面電位分析儀 (zeta potential analyzer) 51
2.3.7 雷射掃描共軛聚焦顯微鏡(laser scanning confocal microscopy) 54
第三章 結果與討論 57
3.1 980 nm雷射激發上轉換奈米粒子與氮化碳量子點複合材料之光動力治療應用 57
3.1.1 上轉換奈米粒子之合成與鑑定 57
3.1.1.1 上轉換奈米粒子之XRD圖譜 58
3.1.1.2 上轉換奈米粒子之TEM影像與FTIR官能基鑑定 59
3.1.1.3上轉換奈米粒子之雷射PL圖譜 61
3.1.2 石墨相氮化碳量子點之合成與鑑定 62
3.1.2.1 石墨相氮化碳量子點之UV/Vis吸收圖譜與PL圖譜 63
3.1.2.2 石墨相氮化碳量子點之TEM影像 64
3.1.2.3 石墨相氮化碳量子點之介面電位分析 65
3.1.3 UCNP-PLL@g-C3N4奈米複合材料之相關鑑定 66
3.1.3.1 UCNP-PLL@g-C3N4奈米複合材料之TEM影像 68
3.1.3.2 UCNP-PLL@g-C3N4奈米複合材料之介面電位分析與FT-IR官能基鑑定 68
3.1.3.3 UCNP-PLL@g-C3N4奈米複合材料之雷射PL圖譜 70
3.1.3.4 UCNP-PLL@g-C3N4奈米複合材料之螢光壽命量測分析 71
3.1.4 奈米複合材料於光動力治療之結果與討論 72
3.1.4.1 細胞毒性之測試 73
3.1.4.2 奈米複合材料於溶液中ROS含量之測試 75
3.1.4.3 奈米複合材料於OECM-1細胞中ROS含量之測試 79
3.1.4.4 奈米複合材料於光動力治療之細胞凋亡機制探討 82
3.1.4.5 奈米複合材料於體內實驗(in vivo)之光動力活性 84
3.2 808 nm雷射激發上轉換奈米粒子與氮化碳量子點複合材料之光動力治療應用 85
3.2.1 上轉換奈米粒子之合成與鑑定 85
3.2.1.1 808 nm上轉換奈米粒子之XRD圖譜 86
3.2.1.2 808 nm上轉換奈米粒子之TEM影像 87
3.2.1.3 808 nm上轉換奈米粒子之PL圖譜 88
3.2.1.4 808 nm UCNP-PLL@g-C3N4奈米複合材料之相關鑑定 89
3.2.1.5 808 nm UCNP-PLL@g-C3N4奈米複合材料之TEM影像 91
3.2.1.6 808 nm UCNP-PLL@g-C3N4奈米複合材料之介面電位與雷射PL圖譜 93
3.2.2 奈米複合材料於光動力治療之結果與討論 95
3.2.2.1 細胞毒性之測試 95
3.2.2.2 奈米複合材料於溶液中ROS含量之測試 96
第四章 結論 98
參考文獻 99
dc.language.isozh-TW
dc.title上轉換奈米粒子與氮化碳量子點複合材料之近紅外光驅動光動力治療zh_TW
dc.titleNear-Infrared Light Mediated Photodynamic Therapy
Based on Nanocomposite of Upconversion Nanoparticles
and Graphitic Carbon Nitride Quantum Dots
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林金全(King-Chuen Lin),蕭宏昇(Michael, Hsiao),蔣孝澈(Shiaw-Tseh Chiang),鍾仁傑(Ren-Jei Chung)
dc.subject.keyword上轉換奈米粒子,光動力治療,zh_TW
dc.subject.keywordupconversion nanoparticles,photodynamic therapy,en
dc.relation.page109
dc.identifier.doi10.6342/NTU201600440
dc.rights.note有償授權
dc.date.accepted2016-06-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
9.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved