Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50936
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳垣崇(Yuan-Tsong Chen)
dc.contributor.authorChia-Jung Changen
dc.contributor.author張家榮zh_TW
dc.date.accessioned2021-06-15T13:07:38Z-
dc.date.available2021-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-06-30
dc.identifier.citation1. Takahashi K, Oharaseki T, Yokouchi Y (2011) Pathogenesis of Kawasaki disease. Clinical & Experimental Immunology 164: 20-22.
2. Burns JC, Kushner HI, Bastian JF, Shike H, Shimizu C, et al. (2000) Kawasaki disease: A brief history. Pediatrics 106: E27.
3. Coustasse A, Larry J, Lee D (2012) Can Kawasaki disease be managed? Perm J 16: 70-72.
4. Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, et al. (2004) Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 114: 1708-1733.
5. Hall GC, Tulloh LE, Tulloh RM (2016) Kawasaki disease incidence in children and adolescents: an observational study in primary care. Br J Gen Pract 66: e271-276.
6. Makino N, Nakamura Y, Yashiro M, Ae R, Tsuboi S, et al. (2015) Descriptive epidemiology of Kawasaki disease in Japan, 2011-2012: from the results of the 22nd nationwide survey. J Epidemiol 25: 239-245.
7. Uehara R, Belay ED (2012) Epidemiology of Kawasaki disease in Asia, Europe, and the United States. J Epidemiol 22: 79-85.
8. Huang SK, Lin MT, Chen HC, Huang SC, Wu MH (2013) Epidemiology of Kawasaki disease: prevalence from national database and future trends projection by system dynamics modeling. J Pediatr 163: 126-131 e121.
9. Yim D, Curtis N, Cheung M, Burgner D (2013) Update on Kawasaki disease: epidemiology, aetiology and pathogenesis. J Paediatr Child Health 49: 704-708.
10. Dajani AS, Taubert KA, Gerber MA, Shulman ST, Ferrieri P, et al. (1993) Diagnosis and therapy of Kawasaki disease in children. Circulation 87: 1776-1780.
11. Newburger JW, Takahashi M, Burns JC, Beiser AS, Chung KJ, et al. (1986) The treatment of Kawasaki syndrome with intravenous gamma globulin. N Engl J Med 315: 341-347.
12. Taubert KA, Rowley AH, Shulman ST (1994) Seven-year national survey of Kawasaki disease and acute rheumatic fever. Pediatr Infect Dis J 13: 704-708.
13. Burns JC, Shike H, Gordon JB, Malhotra A, Schoenwetter M, et al. (1996) Sequelae of Kawasaki disease in adolescents and young adults. J Am Coll Cardiol 28: 253-257.
14. Fujiwara H, Hamashima Y (1978) Pathology of the heart in Kawasaki disease. Pediatrics 61: 100-107.
15. Newburger JW, Takahashi M, Burns JC (2016) Kawasaki Disease. J Am Coll Cardiol 67: 1738-1749.
16. (2010) Guidelines for diagnosis and management of cardiovascular sequelae in Kawasaki disease (JCS 2008)--digest version. Circ J 74: 1989-2020.
17. Moran AM, Newburger JW, Sanders SP, Parness IA, Spevak PJ, et al. (2000) Abnormal myocardial mechanics in Kawasaki disease: rapid response to gamma-globulin. Am Heart J 139: 217-223.
18. Chang FY, Hwang B, Chen SJ, Lee PC, Meng CC, et al. (2006) Characteristics of Kawasaki disease in infants younger than six months of age. Pediatr Infect Dis J 25: 241-244.
19. Hartopo AB, Setianto BY (2013) Coronary artery sequel of Kawasaki disease in adulthood, a concern for internists and cardiologists. Acta Med Indones 45: 69-75.
20. Senzaki H (2008) Long-term outcome of Kawasaki disease. Circulation 118: 2763-2772.
21. Orenstein JM, Shulman ST, Fox LM, Baker SC, Takahashi M, et al. (2012) Three linked vasculopathic processes characterize Kawasaki disease: a light and transmission electron microscopic study. PLoS One 7: e38998.
22. Naoe S, Takahashi K, Masuda H, Tanaka N (1991) Kawasaki disease. With particular emphasis on arterial lesions. Acta Pathol Jpn 41: 785-797.
23. Kanai T, Ishiwata T, Kobayashi T, Sato H, Takizawa M, et al. (2011) Ulinastatin, a urinary trypsin inhibitor, for the initial treatment of patients with Kawasaki disease: a retrospective study. Circulation 124: 2822-2828.
24. Brown TJ, Crawford SE, Cornwall ML, Garcia F, Shulman ST, et al. (2001) CD8 T lymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasaki disease. J Infect Dis 184: 940-943.
25. Shimizu C, Oharaseki T, Takahashi K, Kottek A, Franco A, et al. (2013) The role of TGF-beta and myofibroblasts in the arteritis of Kawasaki disease. Hum Pathol 44: 189-198.
26. Lee AM, Shimizu C, Oharaseki T, Takahashi K, Daniels LB, et al. (2015) Role of TGF-beta Signaling in Remodeling of Noncoronary Artery Aneurysms in Kawasaki Disease. Pediatr Dev Pathol 18: 310-317.
27. Shrestha S, Wiener HW, Aissani B, Shendre A, Tang J, et al. (2015) Imputation of class I and II HLA loci using high-density SNPs from ImmunoChip and their associations with Kawasaki disease in family-based study. Int J Immunogenet 42: 140-146.
28. Rowley AH, Baker SC, Orenstein JM, Shulman ST (2008) Searching for the cause of Kawasaki disease--cytoplasmic inclusion bodies provide new insight. Nat Rev Microbiol 6: 394-401.
29. Hwang JY, Lee KY, Rhim JW, Youn YS, Oh JH, et al. (2011) Assessment of intravenous immunoglobulin non-responders in Kawasaki disease. Arch Dis Child 96: 1088-1090.
30. Freeman AF, Shulman ST (2006) Kawasaki disease: summary of the American Heart Association guidelines. Am Fam Physician 74: 1141-1148.
31. Kim DS (2006) Kawasaki disease. Yonsei Med J 47: 759-772.
32. Wang CL, Wu YT, Liu CA, Kuo HC, Yang KD (2005) Kawasaki disease: infection, immunity and genetics. Pediatr Infect Dis J 24: 998-1004.
33. Holman RC, Belay ED, Christensen KY, Folkema AM, Steiner CA, et al. (2010) Hospitalizations for Kawasaki syndrome among children in the United States, 1997-2007. Pediatr Infect Dis J 29: 483-488.
34. Bell DM, Brink EW, Nitzkin JL, Hall CB, Wulff H, et al. (1981) Kawasaki syndrome: description of two outbreaks in the United States. N Engl J Med 304: 1568-1575.
35. Rowley AH (2011) Kawasaki disease: novel insights into etiology and genetic susceptibility. Annu Rev Med 62: 69-77.
36. Meissner HC, Leung DY (2000) Superantigens, conventional antigens and the etiology of Kawasaki syndrome. Pediatr Infect Dis J 19: 91-94.
37. Rowley AH, Shulman ST, Mask CA, Finn LS, Terai M, et al. (2000) IgA plasma cell infiltration of proximal respiratory tract, pancreas, kidney, and coronary artery in acute Kawasaki disease. J Infect Dis 182: 1183-1191.
38. Rowley AH, Baker SC, Shulman ST, Fox LM, Takahashi K, et al. (2005) Cytoplasmic inclusion bodies are detected by synthetic antibody in ciliated bronchial epithelium during acute Kawasaki disease. J Infect Dis 192: 1757-1766.
39. Yang ZP, Cummings PK, Patton DL, Kuo CC (1994) Ultrastructural lung pathology of experimental Chlamydia pneumoniae pneumonitis in mice. J Infect Dis 170: 464-467.
40. Rowley AH, Baker SC, Shulman ST, Garcia FL, Fox LM, et al. (2008) RNA-containing cytoplasmic inclusion bodies in ciliated bronchial epithelium months to years after acute Kawasaki disease. PLoS One 3: e1582.
41. Holman RC, Christensen KY, Belay ED, Steiner CA, Effler PV, et al. (2010) Racial/ethnic differences in the incidence of Kawasaki syndrome among children in Hawaii. Hawaii Med J 69: 194-197.
42. Shulman ST, Rowley AH (2015) Kawasaki disease: insights into pathogenesis and approaches to treatment. Nat Rev Rheumatol 11: 475-482.
43. Fujita Y, Nakamura Y, Sakata K, Hara N, Kobayashi M, et al. (1989) Kawasaki disease in families. Pediatrics 84: 666-669.
44. Uehara R, Yashiro M, Nakamura Y, Yanagawa H (2003) Kawasaki disease in parents and children. Acta Paediatr 92: 694-697.
45. Takahashi K, Oharaseki T, Yokouchi Y (2014) Update on etio and immunopathogenesis of Kawasaki disease. Curr Opin Rheumatol 26: 31-36.
46. Onouchi Y, Gunji T, Burns JC, Shimizu C, Newburger JW, et al. (2008) ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet 40: 35-42.
47. Kuo HC, Hsu YW, Lo MH, Huang YH, Chien SC, et al. (2014) Single-nucleotide polymorphism rs7251246 in ITPKC is associated with susceptibility and coronary artery lesions in Kawasaki disease. PLoS One 9: e91118.
48. Chi H, Huang FY, Chen MR, Chiu NC, Lee HC, et al. (2010) ITPKC gene SNP rs28493229 and Kawasaki disease in Taiwanese children. Hum Mol Genet 19: 1147-1151.
49. Onouchi Y, Ozaki K, Buns JC, Shimizu C, Hamada H, et al. (2010) Common variants in CASP3 confer susceptibility to Kawasaki disease. Hum Mol Genet 19: 2898-2906.
50. Kuo HC, Yu HR, Juo SH, Yang KD, Wang YS, et al. (2011) CASP3 gene single-nucleotide polymorphism (rs72689236) and Kawasaki disease in Taiwanese children. J Hum Genet 56: 161-165.
51. Khor CC, Davila S, Breunis WB, Lee YC, Shimizu C, et al. (2011) Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet 43: 1241-1246.
52. Onouchi Y, Ozaki K, Burns JC, Shimizu C, Terai M, et al. (2012) A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet 44: 517-521.
53. Lee YC, Kuo HC, Chang JS, Chang LY, Huang LM, et al. (2012) Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat Genet 44: 522-525.
54. Iezzi G, Sonderegger I, Ampenberger F, Schmitz N, Marsland BJ, et al. (2009) CD40-CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4+ T cells. Proc Natl Acad Sci U S A 106: 876-881.
55. Furukawa S, Matsubara T, Motohashi T, Tsuda M, Sugimoto H, et al. (1991) Immunological abnormalities in Kawasaki disease with coronary artery lesions. Acta Paediatr Jpn 33: 745-751.
56. Wang Y, Wang W, Gong F, Fu S, Zhang Q, et al. (2013) Evaluation of intravenous immunoglobulin resistance and coronary artery lesions in relation to Th1/Th2 cytokine profiles in patients with Kawasaki disease. Arthritis Rheum 65: 805-814.
57. Greco A, De Virgilio A, Rizzo MI, Tombolini M, Gallo A, et al. (2015) Kawasaki disease: an evolving paradigm. Autoimmun Rev 14: 703-709.
58. Hui-Yuen JS, Duong TT, Yeung RS (2006) TNF-alpha is necessary for induction of coronary artery inflammation and aneurysm formation in an animal model of Kawasaki disease. J Immunol 176: 6294-6301.
59. Oharaseki T, Yokouchi Y, Yamada H, Mamada H, Muto S, et al. (2014) The role of TNF-alpha in a murine model of Kawasaki disease arteritis induced with a Candida albicans cell wall polysaccharide. Mod Rheumatol 24: 120-128.
60. Tremoulet AH, Jain S, Jaggi P, Jimenez-Fernandez S, Pancheri JM, et al. (2014) Infliximab for intensification of primary therapy for Kawasaki disease: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet 383: 1731-1738.
61. Kim JJ, Hong YM, Sohn S, Jang GY, Ha KS, et al. (2011) A genome-wide association analysis reveals 1p31 and 2p13.3 as susceptibility loci for Kawasaki disease. Hum Genet 129: 487-495.
62. Kim S, Dedeoglu F (2005) Update on pediatric vasculitis. Curr Opin Pediatr 17: 695-702.
63. Ko TM, Kuo HC, Chang JS, Chen SP, Liu YM, et al. (2015) CXCL10/IP-10 is a biomarker and mediator for Kawasaki disease. Circ Res 116: 876-883.
64. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, et al. (2007) Population genomics of human gene expression. Nat Genet 39: 1217-1224.
65. Holm K, Melum E, Franke A, Karlsen TH (2010) SNPexp - A web tool for calculating and visualizing correlation between HapMap genotypes and gene expression levels. BMC Bioinformatics 11: 600.
66. Dymecki SM, Niederhuber JE, Desiderio SV (1990) Specific expression of a tyrosine kinase gene, blk, in B lymphoid cells. Science 247: 332-336.
67. Wasserman R, Li YS, Hardy RR (1995) Differential expression of the blk and ret tyrosine kinases during B lineage development is dependent on Ig rearrangement. J Immunol 155: 644-651.
68. Jacob A, Cooney D, Pradhan M, Coggeshall KM (2002) Convergence of signaling pathways on the activation of ERK in B cells. J Biol Chem 277: 23420-23426.
69. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, et al. (2008) Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358: 900-909.
70. Fairfax BP, Makino S, Radhakrishnan J, Plant K, Leslie S, et al. (2012) Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat Genet 44: 502-510.
71. Gregersen PK, Amos CI, Lee AT, Lu Y, Remmers EF, et al. (2009) REL, encoding a member of the NF-kappaB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat Genet 41: 820-823.
72. Simpfendorfer KR, Armstead BE, Shih A, Li W, Curran M, et al. (2015) Autoimmune disease-associated haplotypes of BLK exhibit lowered thresholds for B cell activation and expansion of Ig class-switched B cells. Arthritis Rheumatol 67: 2866-2876.
73. DiLillo DJ, Matsushita T, Tedder TF (2010) B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci 1183: 38-57.
74. Lemoine S, Morva A, Youinou P, Jamin C (2011) Human T cells induce their own regulation through activation of B cells. J Autoimmun 36: 228-238.
75. Watanabe R, Ishiura N, Nakashima H, Kuwano Y, Okochi H, et al. (2010) Regulatory B cells (B10 cells) have a suppressive role in murine lupus: CD19 and B10 cell deficiency exacerbates systemic autoimmunity. J Immunol 184: 4801-4809.
76. Amu S, Saunders SP, Kronenberg M, Mangan NE, Atzberger A, et al. (2010) Regulatory B cells prevent and reverse allergic airway inflammation via FoxP3-positive T regulatory cells in a murine model. J Allergy Clin Immunol 125: 1114-1124 e1118.
77. Borowiec M, Liew CW, Thompson R, Boonyasrisawat W, Hu J, et al. (2009) Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc Natl Acad Sci U S A 106: 14460-14465.
78. Maegdefessel L, Spin JM, Raaz U, Eken SM, Toh R, et al. (2014) miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat Commun 5: 5214.
79. Erdogan T, Kocaman SA, Cetin M, Durakoglugil ME, Kirbas A, et al. (2013) Increased YKL-40 levels in patients with isolated coronary artery ectasia: an observational study. Anadolu Kardiyol Derg 13: 465-470.
80. Nishikawa KC, Millis AJ (2003) gp38k (CHI3L1) is a novel adhesion and migration factor for vascular cells. Exp Cell Res 287: 79-87.
81. Selamet Tierney ES, Newburger JW (2007) Are patients with Kawasaki disease at risk for premature atherosclerosis? J Pediatr 151: 225-228.
82. Ebihara T, Endo R, Kikuta H, Ishiguro N, Ma X, et al. (2005) Differential gene expression of S100 protein family in leukocytes from patients with Kawasaki disease. Eur J Pediatr 164: 427-431.
83. Fury W, Tremoulet AH, Watson VE, Best BM, Shimizu C, et al. (2010) Transcript abundance patterns in Kawasaki disease patients with intravenous immunoglobulin resistance. Hum Immunol 71: 865-873.
84. Hirono K, Foell D, Xing Y, Miyagawa-Tomita S, Ye F, et al. (2006) Expression of myeloid-related protein-8 and -14 in patients with acute Kawasaki disease. J Am Coll Cardiol 48: 1257-1264.
85. Kentsis A, Shulman A, Ahmed S, Brennan E, Monuteaux MC, et al. (2013) Urine proteomics for discovery of improved diagnostic markers of Kawasaki disease. EMBO Mol Med 5: 210-220.
86. Qi Y, Gong F, Zhang Q, Xie C, Wang W, et al. (2012) Reverse regulation of soluble receptor for advanced glycation end products and proinflammatory factor resistin and S100A12 in Kawasaki disease. Arthritis Res Ther 14: R251.
87. Song RX, Zou QM, Li XH, Xu NP, Zhang T, et al. (2015) Plasma MASP-1 concentration and its relationship to recovery from coronary artery lesion in children with Kawasaki disease. Pediatr Res.
88. Abe J, Jibiki T, Noma S, Nakajima T, Saito H, et al. (2005) Gene expression profiling of the effect of high-dose intravenous Ig in patients with Kawasaki disease. J Immunol 174: 5837-5845.
89. Mori M, Miyamae T, Kurosawa R, Yokota S, Onoki H (2001) Two-generation Kawasaki disease: mother and daughter. J Pediatr 139: 754-756.
90. Lee CG, Da Silva CA, Dela Cruz CS, Ahangari F, Ma B, et al. (2011) Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annu Rev Physiol 73: 479-501.
91. Libreros S, Iragavarapu-Charyulu V (2015) YKL-40/CHI3L1 drives inflammation on the road of tumor progression. J Leukoc Biol.
92. Johansen JS, Christoffersen P, Moller S, Price PA, Henriksen JH, et al. (2000) Serum YKL-40 is increased in patients with hepatic fibrosis. J Hepatol 32: 911-920.
93. Rathcke CN, Vestergaard H (2006) YKL-40, a new inflammatory marker with relation to insulin resistance and with a role in endothelial dysfunction and atherosclerosis. Inflamm Res 55: 221-227.
94. Zhang JP, Yuan HX, Kong WT, Liu Y, Lin ZM, et al. (2014) Increased expression of Chitinase 3-like 1 and microvessel density predicts metastasis and poor prognosis in clear cell renal cell carcinoma. Tumour Biol 35: 12131-12137.
95. Zheng JL, Lu L, Hu J, Zhang RY, Zhang Q, et al. (2010) Increased serum YKL-40 and C-reactive protein levels are associated with angiographic lesion progression in patients with coronary artery disease. Atherosclerosis 210: 590-595.
96. Suda K, Iemura M, Nishiono H, Teramachi Y, Koteda Y, et al. (2011) Long-term prognosis of patients with Kawasaki disease complicated by giant coronary aneurysms: a single-institution experience. Circulation 123: 1836-1842.
97. Suda K, Tahara N, Kudo Y, Yoshimoto H, Iemura M, et al. (2012) Persistent coronary arterial inflammation in a patient long after the onset of Kawasaki disease. Int J Cardiol 154: 193-194.
98. Suda K, Tahara N, Honda A, Iemura M, Yoshimoto H, et al. (2015) Persistent peripheral arteritis long after Kawasaki disease - another documentation of ongoing vascular inflammation. Int J Cardiol 180: 88-90.
99. Mitani Y, Sawada H, Hayakawa H, Aoki K, Ohashi H, et al. (2005) Elevated levels of high-sensitivity C-reactive protein and serum amyloid-A late after Kawasaki disease: association between inflammation and late coronary sequelae in Kawasaki disease. Circulation 111: 38-43.
100. Forte A, Della Corte A, De Feo M, Cerasuolo F, Cipollaro M (2010) Role of myofibroblasts in vascular remodelling: focus on restenosis and aneurysm. Cardiovasc Res 88: 395-405.
101. Coen M, Gabbiani G, Bochaton-Piallat ML (2011) Myofibroblast-mediated adventitial remodeling: an underestimated player in arterial pathology. Arterioscler Thromb Vasc Biol 31: 2391-2396.
102. Sakata N, Nabeshima K, Iwasaki H, Tashiro T, Uesugi N, et al. (2007) Possible involvement of myofibroblast in the development of inflammatory aortic aneurysm. Pathol Res Pract 203: 21-29.
103. Zhou Y, Peng H, Sun H, Peng X, Tang C, et al. (2014) Chitinase 3-like 1 suppresses injury and promotes fibroproliferative responses in Mammalian lung fibrosis. Sci Transl Med 6: 240ra276.
104. Abdul-Hussien H, Hanemaaijer R, Verheijen JH, van Bockel JH, Geelkerken RH, et al. (2009) Doxycycline therapy for abdominal aneurysm: Improved proteolytic balance through reduced neutrophil content. J Vasc Surg 49: 741-749.
105. Abdul-Hussien H, Soekhoe RG, Weber E, von der Thusen JH, Kleemann R, et al. (2007) Collagen degradation in the abdominal aneurysm: a conspiracy of matrix metalloproteinase and cysteine collagenases. Am J Pathol 170: 809-817.
106. Lau AC, Duong TT, Ito S, Yeung RS (2008) Matrix metalloproteinase 9 activity leads to elastin breakdown in an animal model of Kawasaki disease. Arthritis Rheum 58: 854-863.
107. Lau AC, Duong TT, Ito S, Yeung RS (2009) Intravenous immunoglobulin and salicylate differentially modulate pathogenic processes leading to vascular damage in a model of Kawasaki disease. Arthritis Rheum 60: 2131-2141.
108. Gong Z, Xing S, Zheng F, Xing Q (2014) Increased expression of chitinase 3-like 1 in aorta of patients with atherosclerosis and suppression of atherosclerosis in apolipoprotein E-knockout mice by chitinase 3-like 1 gene silencing. Mediators Inflamm 2014: 905463.
109. Rosenkranz ME, Schulte DJ, Agle LM, Wong MH, Zhang W, et al. (2005) TLR2 and MyD88 contribute to Lactobacillus casei extract-induced focal coronary arteritis in a mouse model of Kawasaki disease. Circulation 112: 2966-2973.
110. Schulte DJ, Yilmaz A, Shimada K, Fishbein MC, Lowe EL, et al. (2009) Involvement of innate and adaptive immunity in a murine model of coronary arteritis mimicking Kawasaki disease. J Immunol 183: 5311-5318.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50936-
dc.description.abstract川崎氏病是一種急性全身性血管炎,主要發生於五歲以下幼童,尤其易侵犯心臟冠狀動脈,並引起血管瘤的形成。研究指出,未治療病患的冠狀動脈瘤發率約為所有病患的百分之二十五;因此,目前在文明國家中,川崎氏症已成為兒童後天性心臟病的主要原因。臨床與流行病學證據顯示,病原菌感染導致宿主發生不當免疫反應是誘發川崎氏症的決定性因子,宿主本身與免疫相關的遺傳標記亦參與疾病的發生。然而,與免疫相關的遺傳標記如何參與川崎氏症的發生,以及造成冠狀動脈病變的致病機轉,目前都尚未非常明瞭,因此本論文將針對此兩項課題做進一步的探討。
本論文第一部分將針對免疫相關遺傳標記如何參與川崎氏症的發生做深入的研究。BLK基因在過去台灣與日本的全基因組關聯分析(GWAS)中,已被證實其與川崎氏症的併發有高度關性。因此,本論文的第一部分研究將藉由整合不同族群的綜合性分析來更近一步證明BLK基因與川崎氏症病人之易感性有高度相關性。經由統計研究發現,位於BLK基因啟動子區域的單一核苷酸多型性位點rs2736340與台灣、日本、韓國、.歐洲的川崎氏症病人之易感性有明顯相關性;進一步利用聯鎖不平衡(linkage disequilibrium)分析顯示,與單一核苷酸多型性位點rs2736340相關連的區域︰包含啟動子與基因內區(intron),皆與川崎氏症有顯著關聯性。此外,我們在此疾病相關的風險性基因位點rs2736340與急性期川崎氏症病人周邊血液B淋巴細胞的BLK基因表現量的相關聯性研究中發現,在川崎氏症病人的分離初級B淋巴球以及由人類皰疹病毒所轉染製造而成的B淋巴球細胞株中,帶有風險性基因位點rs2736340會明顯減少BLK基因以及蛋白質的表現量。由此基因關聯性研究顯示,B淋巴細胞在急性期川崎氏症的致病機轉中扮演重要角色,且其BLK基因的低表現將改變其正常性功能並造成個體對於川崎氏症的易感染性。因此,藉由瞭解基因多型性與B淋巴細胞功能性之間的連結將有助於瞭解川崎氏症的致病機轉,並發展新型川崎氏症診斷及治療方法。
本論文第二部分為找尋造成川崎氏症病患冠狀動脈病變的可能致病因子。我利用相對和絕對定量同位素標記(iTRAQ)蛋白質定量質譜分析技術,比較川崎氏症病人及非川崎氏症發燒病人血漿的蛋白質圖譜的差異性,藉此找尋導致冠狀動脈病變的致病因子。研究結果發現有505個表現差異性蛋白在川崎氏症病人血漿中表現,並且進一步利用系統生物學分析軟體暨生物資訊資料庫(Ingenuity Pathway Analysis)分析出141個蛋白與心血管疾病具有相關性。其中過去被認為與冠狀動脈疾病高度相關的類幾丁質酶蛋白CHI3L1亦被發現在川崎氏症病人血漿中高度表現。我們進一步分析此蛋白在33個川崎氏症病人及41個非川崎氏症發燒病人血漿中的含量,結果顯示CHI3L1蛋白在急性期及亞急性期川崎氏症病人血漿中有顯著性的增高。此外,分析曾經產生冠狀動脈瘤的川崎氏症病人在恢復期的CHI3L1蛋白表現量發現,其CHI3L1蛋白含量相對於同時期但未曾產生冠狀動脈瘤的川崎氏症病人之含量具有顯著性的增加。動物實驗中發現,在野生(wild-type)小鼠腹腔連續注射CHI3L1合成蛋白後28天,會造成小鼠的冠狀動脈有明顯增厚現象發生。經由定量即時聚合酶鏈鎖反應(Real-time PCR)實驗發現,CHI3L1合成蛋白腹腔注射後的小鼠,其病變的冠狀動脈有增強表現肌成纖維細胞蛋白及基質金屬蛋白酶現象。本論文的第二部分研究推論,CHI3L1蛋白在川崎氏症病人中高度表現將是造成冠狀動脈病變的重要因子,並可作為未來治療川崎氏症冠狀動脈病變的新藥摽的。
zh_TW
dc.description.abstractKawasaki disease (KD) is an acute, self-limited vasculitis predominantly affecting children under the age of 5 years. Coronary artery aneurysms develop in 25% of untreated patients, making KD the leading cause of acquired heart disease in children in the developed countries. The clinical and epidemiological observations suggest that host immune dysregulation triggered by infectious agent(s) is the critical component for disease initiation, and genetic determinants in immune-related loci have also been identified to contribute to disease susceptibility. To date, the role of immune-associated genetic factors in disease progression and the pathological mechanism of coronary artery lesion in KD remain unclear; and my thesis focused on these two aspects.
My first study focused on the further elucidation of the immune-associated genetic factors for KD. The BLK locus has been reported to be associated with Kawasaki disease in two genome-wide association studies (GWAS) conducted in a Taiwanese population of Han Chinese ancestry (Taiwanese) and in Japanese cohorts. In the first study, we build on these findings with replication studies of the BLK locus in populations of Korean and European descent. The BLK region was significantly associated with KD susceptibility in both populations. Within the BLK gene the rs2736340-located linkage disequilibrium (LD) comprising the promoter and first intron was strongly associated with KD, with the combined results of Asian studies including Taiwanese, Japanese, and Korean populations (2,539 KD patients and 7,021 controls) providing very compelling evidence of association (rs2736340, OR = 1.498, 1.354–1.657; P = 4.74×10-31). We determined the percentage of B cells present in the peripheral blood mononuclear cell (PBMC) population and the expression of BLK in the peripheral blood leukocytes (leukocytes) of KD patients during the acute and convalescent stages. The percentage of B cells in the PBMC population and the expression of BLK in leukocytes were induced in patients in the acute stage of KD. In B cell lines derived from KD patients, and in purified B cells from KD patients obtained during the acute stage, those with the risk allele of rs2736340 expressed significantly lower levels of BLK. These results suggest that peripheral B cells play a pathogenic role during the acute stage of KD. Decreased BLK expression caused by allele-restriction in peripheral blood B cells may alter B cell function and predispose individuals to KD. These associative data suggest that B cells homeostasis regulated by KD-associated SNPs may play a critical role in KD pathogenesis. Understanding the functional implications may facilitate the development of B cell-mediated therapy for KD.
The second study of my thesis focused on the identification of potential biomarkers that might mediate the pathological change in the coronary arteries of KD. I globally analyzed the protein profiles of plasma samples obtained from KD patients in the acute phase and non-KD fever control subjects using isobaric tags for the relative and absolute quantitation (iTRAQ) labeling tandem mass spec¬trometry. Overall, 505 proteins were identified as differentially expressed proteins in KD, and 141 proteins were classified into the category of cardiovascular diseases by Ingenuity Pathway Analysis annotation. One of the notable upregulated proteins in the pathway was chitinase-3-like protein 1 (CHI3L1). Significant elevations of CHI3L1 were confirmed in a validation cohort of 33 KD patients during the acute and subacute phases as compared to non-KD fever controls (acute KD, 58.9 ± 22.4 ng/mL; subacute KD, 42.7 ± 23.1 ng/mL; control, 29.1 ± 15.5 ng/mL). In addition, convalescent KD subjects with coronary artery aneurysm had significantly higher CHI3L1 levels compared to KD subjects with normal coronary arteries. Notably, injection of recombinant CHI3L1 into wild-type mice caused intimal cell transition leading to coronary wall thickening. Coronary lesions in mice treated with CHI3L1 were enhanced by myofibroblast generation and matrix metalloproteinase activation. In the second study, these results suggest that CHI3L1 is crucial for the development of coronary artery abnormality in KD and potentially represents a novel pharmacological target for treating KD coronary lesions.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:07:38Z (GMT). No. of bitstreams: 1
ntu-105-D99445001-1.pdf: 1557310 bytes, checksum: a293e117462f57921a5601d0e9fbb53d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsTable of Contents I
List of Tables III
List of Figures III
中文摘要 IV
Abstract VII
Chapter 1. Introduction 1
1-1. Kawasaki disease 1
1-2. Epidemiology of Kawasaki disease 1
1-3. Coronary artery aneurysms (CAAs) in Kawasaki disease 2
1-4. Treatment of Kawasaki disease 5
1-5. Infectious etiology of Kawasaki disease 6
1-6. Genetic factors related to Kawasaki disease susceptibility 7
1-7. Immune dysregulation in Kawasaki disease 9
Chapter 2. Study-1: Replication and meta-analysis of GWAS identified susceptibility locus in Kawasaki disease confirm the importance of B lymphoid tyrosine kinase (BLK) in disease susceptibility 11
Chapter 3. Materials and Methods (Study-1) 12
3-1. Ethical statement 12
3-2. Patients and control subjects 12
3-3. Genotyping 13
3-4. Replication and meta-analysis 13
3-5. PBMC isolation, lymphocyte subsets, and B cell preparation 14
3-6. RNA isolation and real-time PCR 15
3-7. Western blot 16
3-8. Expression quantitative trait locus (eQTL) analysis 16
Chapter 4. Results (Study-1) 18
4-1. Replication studies in Korean and European populations validate previous genetic associations in KD and implicate an LD region within the BLK promoter 18
4-2. The B cell population is highly induced in peripheral blood mononuclear cells (PBMC) at the acute stage of KD 19
4-3. rs2736340 is associated with BLK expression in B cells 20
Chapter 5. Discussion (Study-1) 23
5-1. Replication and meta-analysis in Asian and European population evidenced the genetic associations of BLK locus in Kawasaki disease 23
5-2. BLK expression is associated with the risk variant of rs2736340 24
5-3. The potential roles of allelic regulation of BLK expression for humoral immunity 25
5-4. BLK gene may be important in the susceptibility of autoimmune disease 26
Chapter 6. Conclusion (Study-1) 28
Chapter 7. Study-2: Induction of coronary artery abnormality in Kawasaki disease by chitinase-3-like protein 1 29
Chapter 8. Materials and Methods (Study-2) 30
8-1. Blood samples of patients with CAAs 30
8-2. Sample preparation for iTRAQ 30
8-3. iTRAQ labeling of peptides 30
8-4. Fractionation by strong cation exchange (SCX) chromatography 31
8-5. LC-MS/MS analysis 32
8-6. Data analysis 33
8-7. Ingenuity Pathway Analysis (IPA) 33
8-8. Plasma chitinase-3-like protein 1 (CHI3L1) levels 34
8-9. Mouse model for in vivo and histological examination 34
8-10. RNA isolation of mouse hearts and real-time PCR 34
8-11. Statistical analysis 35
Chapter 9. Results (Study-2) 36
9-1. Plasma CHI3L1 levels were significantly increased in KD subjects 36
9-2. Plasma CHI3L1 levels were persistently higher in the convalescent stage of KD and during follow-up in KD subjects with CAAs. 37
9-3. Development of coronary artery abnormality induced by recombinant mouse CHI3L1 in mice 38
Chapter 10. Discussion (Study-2) 40
10-1. Inflammatory factors mediate the development of coronary artery aneurysms in Kawasaki disease 40
10-2. Elevation of CHI3L1 involves in the pathological changes of coronary artery in KD 41
10-3. CHI3L1 may cause coronary artery abnormality through induction on myofibroblast generation 42
10-4. CHI3L1 may modulate inflammation in coronary artery tissue and induce aneurysm progression 43
10-5. Technical limitations for coronary artery abnormality induced by CHI3L1 treatment 43
Chapter 11. Conclusion (Study-2) 45
Chapter 12. References 46
Tables 63
Figures 72
dc.language.isoen
dc.title川崎氏症致病機轉之研究zh_TW
dc.titlePathogenesis of Kawasaki Diseaseen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄔哲源(Jer-Yuarn Wu),張正成(Jeng-Sheng Chang),林銘泰(Ming-Tai Lin),顧家綺(Chia-Chi Ku)
dc.subject.keyword川崎氏症,B淋巴?胞酪氨酸激?,單核?酸多型性,統合分析,冠狀動脈異常,類幾丁質?蛋白,相對和絕對定量同位素標記,zh_TW
dc.subject.keywordKawasaki disease,BLK,SNP,meta-analysis,coronary artery abnormality,chitinase-3-like protein 1,iTRAQ,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201600535
dc.rights.note有償授權
dc.date.accepted2016-06-30
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved