請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50935完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡定平(Din Ping Tsai) | |
| dc.contributor.author | Ting-Yu Chen | en |
| dc.contributor.author | 陳亭伃 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:07:34Z | - |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-06-30 | |
| dc.identifier.citation | [1-1] 邱國斌、蔡定平「金屬表面電漿簡介」,物理雙月刊,第廿八卷第二期,472-485頁(2006)。
[1-2] Textbook: Stefan A. Maier, 'Plasmonics: fundamentals and applications,' Springer, Chapter 1- 2. [1-3] M. L. Juan, M. Righini and R. Quidant, 'Plasmon nano-optical tweezers,' Nature Photonics 5(6), 349-356 (2011). [1-4] H. Fröhlich and H. Pelzer, 'Plasma oscillations and energy loss of charged particles in solids,' Proceedings of the Physical Society. Section A 68, 525 (1955). [1-5] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, 'The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,' J. Phys. Chem. B 107(3), 668–677 (2003). [1-6] J. P. Kottmann and O. J. F. Martin, 'Plasmon resonances of silver nanowires with a nonregular cross section,' Phys. Rev. B 64, 235402 (2001). [1-7] J. B. Khurgin and A. Boltasseva, 'Reflecting upon the losses in plasmonics and metamaterials,' MRS Bull 37, 768–779 (2012). [1-8] G. V. Naik, V. M. Shalaev and A. Boltasseva, 'Alternative plasmonic materials: beyond gold and silver,' Advanced Materials 25, 3264–3294 (2013). [1-9] C. Langhammer, M. Schwind, B. Kasemo and I. Zoric, 'Localized surface plasmon resonances in aluminum nanodisks,' Nano Letters 8, 1461-1471 (2008). [1-10] M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander and N. J. Halas, 'Aluminum plasmonic nanoantennas,' Nano Letters 12, 6000-6004 (2012). [1-11] B. Y. Zheng, Y. Wang, P. Nordlander and N. J. Halas, 'Color‐selective and CMOS‐compatible photodetection based on aluminum plasmonics,' Advanced Materials 26, 6318-6323 (2014). [1-12] J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlanderb, N. J. Halas and S. Link, 'Vivid, full-color aluminum plasmonic pixels,' Proceedings of the National Academy of Sciences 111(40), 14348-14353 (2014). [1-13] M. Castro-Lopez, D. Brinks, R. Sapienza and N. F. van Hulst, 'Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas,' Nano Letters 11, 4674-4678 (2011). [1-14] S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci and J. F. Löffler, 'Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,' Journal of the American Chemical Society 134, 1966-1969 (2012). [1-15] M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond and J. R. Lakowicz, 'Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,' Analytical Chemistry 81, 1397-1403 (2009). [1-16] V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, 'Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,' Nano Letters. 14(11), 6672-6678 (2014). [1-17] Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, 'Aluminum plasmonic multicolor meta-hologram,' Nano Letters 15, 3122-3127 (2015). [1-18] M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P Nordlander and N. J. Halas, 'Aluminum for plasmonics,' ACS nano 8, 834-840 (2013). [1-19] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, 'Low frequency plasmons in thin-wire structures,' Journal of Physics: Condensed Matter 10(22), 4785 (1998). [1-20] J. C. Bose, 'On the rotation of plane of polarization of electric waves by a twisted structure,' Proceedings of the Royal Society of London 63, 146 (1898). [1-21] V. G. Veselago, 'The electrodynamics of substances with simultaneously negative values of ε and μ,' Soviet Physics Uspekhi 10, 509 (1968). [1-22] D. J. Robbins J. B. Pendry, A. J. Holden and W. J. Stewart. 'Magnetism from conductors and enhanced nonlinear phenomena.' Microwave Theory and Techniques, IEEE Transactions 47(11), 2075-2084 (1999). [1-23] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz. 'Composite medium with simultaneously negative permeability and permittivity,' Physical Review Letters 84, 4184 (2000). [1-24] J. B Pendry, 'Negative refraction makes a perfect lens,' Physical Review Letters 85(18), 3966 (2000). [1-25] J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem and M. B. Sinclair, 'Realizing optical magnetism from dielectric metamaterials,' Physical Review Letters 108, 097402 (2012). [1-26] P. Moitra, Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs and J. Valentine, 'Realization of an all-dielectric zero-index optical metamaterial,' Nature Photonics 7, 791-795 (2013). [1-27] J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G.Freymann, S. Lindenand and M. Wegener, 'Gold helix photonic metamaterial as broadband circular polarizer,' Science 325(5947), 1513-1515 (2009). [1-28] H. S. Park, T. T. Kim, H. D. Kim, K. Kim and B. Min, 'Nondispersive optical activity of meshed helical metamaterials,' Nature Communications 5, 5435 (2014). [1-29] G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy and A. V. Zayats, 'Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,' Nature Nanotechnology 6, 107-111 (2011). [1-30] P. C. Wu, W. T. Chen, K.-Y. Yang, C. T. Hsiao, G. Sun, A. Q. Liu, N. I. Zheludev, D. P. Tsai, 'Magnetic plasmon induced transparency in three-dimensional metamolecules,' Nanophotonics 1, 131-138 (2012). [1-31] T. Kaelberer, V. A. Fedotov, N. Papasmakis, D. P. Tsai, N. I. Zheludev, 'Toroidal dipolar response in a metamaterial,' Science 330, 1510-1512 (2010). [1-32] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso and Z. Gaburro, 'Light propagation with phase discontinuities: generalized laws of reflection and refraction,' Science 334(6054), 333-337 (2011). [1-33] F. Aieta, P. Genevet N., Yu, M. A. Kats, Z. Gaburro and F. Capasso, 'Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,' Nano Letters 12(3), 1702-1706 (2012). [1-34] N. Meinzer, W. L. Barnes and I. R. Hooper, 'Plasmonic meta-atoms and metasurfaces,' Nature Photonics 8(12), 889-898 (2014). [1-35] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li and L. Zhou, 'Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,' Nature Materials 11 426-431 (2012). [1-36] S.Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, G. Y. Guo, L. Zhou and D. P. Tsai, 'High-efficiency broadband anomalous reflection by gradient meta-surfaces,' Nano Letters 12(12), 6223-6229. (2012). [1-37] L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf and S. Zhang, 'Dispersionless phase discontinuities for controlling light propagation,' Nano Letters 12(11), 5750-5755 (2012). [1-38] F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro and F. Capasso, 'Aberration-free ultrathin at lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,' Nano Letters 12, 4932-4936 (2012). [1-39] X. Ni, S. Ishii, A. V. Kildishev and V. M. Shalaev, 'Ultrathin, planar, Babinet-inverted plasmonic metalenses,' Light Science & Applications 2, e72 (2013). [1-40] M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso and F. Capasso, 'Achromatic metasurface lens at telecommunication wavelengths,' Nano Letters 15, 5358-5362 (2015). [1-41] X. Ni, A. V. Kildishev and V. M. Shalaev, 'Metasurface holograms for visible light,' Nature Communications 4, 2807 (2013). [1-42] W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, S. Sun, L. Zhou, A.-Q. Liu and D. P. Tsai, 'High-efficiency broadband meta-hologram with polarization-controlled dual images,' Nano Letters 14(1), 225-230 (2014). [1-43] F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, 'Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,' ACS Nano 9, 4111-4119 (2015). [1-44] N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, 'A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,' Nano Letters 12, 6328-6333 (2012). [2-1] E. Collett, 'Field guide to polarization,' Vol. 15. Bellingham, WA: SPIE press (2005). [2-2] S. N. Savenkov, 'Jones and Mueller matrices: structure, symmetry relations and information content,' In Light Scattering Reviews 4 (pp. 71-119). Springer Berlin Heidelberg. (2009). [2-3] E. J. Galvez and S. Khadka, 'Poincaré modes of light,' In SPIE OPTO (pp. 82740Y-82740Y). International Society for Optics and Photonics (2012). [2-4] S. Pancharatnam, 'Generalized theory of interference and its applications,' In Proceedings of the Indian Academy of Sciences-Section A 44, 398-417 (1956). [2-5] M. V. Berry, 'The adiabatic phase and Pancharatnam's phase for polarized light,' Journal of Modern Optics 34, 1401-1407 (1987). [2-6] 李華鐘,'量子绝热定理, 思想和方法.' 物理 34.06 (2005)。 [2-7] 李華鍾,'量子幾何相位概論:簡單物理系統的整體性',科學出版社 (2013)。 [2-8] Z. Bomzon, V. Kleiner, and E. Hasman, 'Pancharatnam–Berry phase in space-variant polarization-state manipulations with subwavelength gratings,' Optics Letters 26, 1424 (2001). [2-9] G. Biener, A. Niv, V. Kleiner and E. Hasman, 'Formation of helical beams by use of Pancharatnam–Berry phase optical elements,' Optics Letters 27(21), 1875-1877 (2002). [2-10] X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang and T. Zentgraf, 'Dual-polarity plasmonic metalens for visible light,' Nature Communications 3, 1198 (2012). [2-11] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu and F. Capasso, 'Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,' Science 352(6290), 1190-1194 (2016). [2-12] M. Khorasaninejad and K. B. Crozier, 'Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter,' Nature Communications 5 (2014). [2-13] Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs and J. Valentine, 'Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,' Nano Letters 14(3), 1394-1399 (2014). [2-14] G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf and S. Zhang, 'Metasurface holograms reaching 80% efficiency,' Nature Nanotechnology 10(4), 308-312 (2015). [3-1] R. L. Courant, 'Variational methods for the solution of problems of equilibrium and vibration,' Bulletin of the American Mathematical Society 49, 1-23(1943). [3-2] J. F. Lee, R. Lee, and A. Cangellaris, 'Time-domain finite-element methods,' IEEE Transactions on Antenna and Propagation 45(3), 430-442 (1997). [3-3] K. S. Yee, 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,' IEEE Transaction Antennas and Propagation 14, 302-307 (1966). [3-4] https://software.intel.com/en-us/articles/fdtd-algorithm-optimization-on-intel-xeon-phi-coprocessor?language=en [3-5] T. Weiland, 'A discretization method for the solution of Maxwell's equations for six-component fields,' Electronics and Communication (AEÜ) 31, 116 (1977). [3-6] J. W. Hand, 'Modelling the interaction of electromagnetic fields (10 MHz–10 GHz) with the human body: methods and applications,' Physics in medicine and biology 53(16), R243 (2008). [3-7] https://www.shibaura.co.jp/ [3-8] 楊雲凱,'物理氣相沉積(PVD)介紹',國家奈米元件實驗室奈米通訊 22 (2015) [3-9] Brigham Young University electrical & computer engineering: http://www.cleanroom.byu.edu/metal.phtml [3-10] National nanofab center: https://www.nnfc.re.kr/eng/index.jsp [3-11] I. Maller, M. Hazakis, and R. Srinivasan, “High resolution positive resists for electron beam exposure,” IBM J. Res. Dev. 12, 251 (1968). [3-12] http://www.zeon.co.jp/ [3-13] http://www.microchem.com/ [4-1] ELIONIX CO., 'ELS-7500EX Instruction Manual.' | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50935 | - |
| dc.description.abstract | 近年來由於奈米技術日益發達,生活科技中對於資料處理以及訊息傳輸速度的要求也越來越高,因此許多奈米科技因應而生,而許多光電元件的尺寸亦越做越小。
光學元件藉由改變相位、振幅和偏振來將光的波前調製成我們所需要的狀態。傳統的光學元件是利用光的折射、反射和繞射在有適當的折射率介質中傳遞達成,藉此相位和偏振的改變是光在元件中行進時逐漸累積,因此有著厚重和應用波段受材料限制等問題。 超穎介面(metasurface)打破了這些問題,由次波長人造結構組成的超穎介面具有非凡的光調控能力,在廣闊的電磁波波段具有超薄光學元件應用的潛力,諸如透鏡、波片、全像片等。在相同的材質下,可以藉著改變次波長結構的尺寸、形狀和週期等就能改變其光學特性,讓光很快速的產生變化,並且將幾十奈米厚的結構排成陣列以後即能自由的調控波前。 本文主要研究與設計能任意調控偏振的超穎介面。由二維排列的鋁奈米棒/二氧化矽/鋁鏡所構成,能在全可見光波段具有效果。藉由特殊的相位調製方法和適當的結構週期排列設計,任意偏振的光即能產生。超薄且調製能力強的超穎介面對未來積體電路整合等十分有利。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:07:34Z (GMT). No. of bitstreams: 1 ntu-105-R03222031-1.pdf: 4881500 bytes, checksum: 7f113bb191b43e925da8a55c81fdb332 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 第一章 表面電漿子、超穎材料與超穎介面之簡介 1
1-1前言 1 1-2表面電漿子 1 1-2-1表面電漿子理論 1 1-2-2介電物質與金屬介面的表面電漿模態 5 1-2-3激發表面電漿耦合機制 7 1-2-4侷域性表面電漿共振 9 1-2-5鋁的電漿共振 11 1-3超穎材料 12 1-4超穎介面 14 1-4-1簡介 14 1-4-2廣義司乃爾定律 15 1-4-3廣義司乃爾定律的實現 17 1-4-4應用 19 第二章 偏振 21 2-1偏振的表達方式 21 2-1-1瓊斯計算 22 2-1-2史托克向量 23 2-1-3穆勒矩陣 25 2-1-4實例 26 2-1-5邦加球 28 2-2 Pancharatnam–Berry相位 29 2-2-1 Berry 相位 30 2-2-2應用 31 第三章 數值模擬及實驗儀器 34 3-1數值模擬計算 34 3-1-1有限元素法 34 3-1-2時域有限差分法 35 3-1-3有限積分技術 38 3-2實驗儀器與方法 40 3-2-1四靶濺鍍機 40 3-2-2電子槍蒸鍍機 41 3-2-3電子束直寫微影系統 42 3-2-4顯微光譜 45 第四章 偏振調控超穎介面 45 4-1研究目的 45 4-2元件的設計 46 4-2-1單一天線和陣列的設計 46 4-2-2多種偏振調控 48 4-3元件的製作 53 4-4量測與結果 54 第五章 結論與展望 58 參考文獻 60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超穎介面 | zh_TW |
| dc.subject | 偏振 | zh_TW |
| dc.subject | Pancharatnam–Berry相位 | zh_TW |
| dc.subject | 鋁電漿子 | zh_TW |
| dc.subject | 超穎元件 | zh_TW |
| dc.subject | 超穎元件 | zh_TW |
| dc.subject | 鋁電漿子 | zh_TW |
| dc.subject | Pancharatnam–Berry相位 | zh_TW |
| dc.subject | 偏振 | zh_TW |
| dc.subject | 超穎介面 | zh_TW |
| dc.subject | metasurfaces | en |
| dc.subject | polarization | en |
| dc.subject | Pancharatnam–Berry phase | en |
| dc.subject | aluminum plasmonics | en |
| dc.subject | meta-devices | en |
| dc.subject | metasurfaces | en |
| dc.subject | polarization | en |
| dc.subject | Pancharatnam–Berry phase | en |
| dc.subject | aluminum plasmonics | en |
| dc.subject | meta-devices | en |
| dc.title | 鋁電漿子超穎介面於可見光偏振調控之研究 | zh_TW |
| dc.title | Aluminum Plasmonic Metasurface for Polarization Control at Visible Light | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 藍永強,王智明,廖駿偉 | |
| dc.subject.keyword | 超穎介面,偏振,Pancharatnam–Berry相位,鋁電漿子,超穎元件, | zh_TW |
| dc.subject.keyword | metasurfaces,polarization,Pancharatnam–Berry phase,aluminum plasmonics,meta-devices, | en |
| dc.relation.page | 66 | |
| dc.identifier.doi | 10.6342/NTU201600555 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-06-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
