請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50890完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高英哲(Ying-Jer Kao) | |
| dc.contributor.author | Yu-Ping Lin | en |
| dc.contributor.author | 林育平 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:04:40Z | - |
| dc.date.available | 2016-09-01 | |
| dc.date.copyright | 2016-07-25 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-05 | |
| dc.identifier.citation | [1] T. Vojta, J. Phys. A 39, R143 (2006).
[2] T. Vojta, AIP Conf. Proc. 1550, 188 (2013). [3] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998). [4] K. Huang, Statistical Mechanics, 2nd ed. (Wiley, 1987). [5] K. G. Wilson, Phys. Rev. D 10, 2445 (1974). [6] K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974). [7] S. R. White, Phys. Rev. Lett. 69, 2863 (1992). [8] S. R. White, Phys. Rev. B 48, 10345 (1993). [9] U. Schollwöck, Ann. Phys. 326, 96 (2011). [10] R. Orús, Ann. Phys. 349, 117 (2014). [11] S.-k. Ma, C. Dasgupta, and C.-k. Hu, Phys. Rev. Lett. 43, 1434 (1979). [12] D. S. Fisher, Phys. Rev. Lett. 69, 534 (1992). [13] A. A. Ovchinnikov, D. V. Dmitriev, V. Y. Krivnov, and V. O. Cheranovskii, Phys. Rev. B 68, 214406 (2003). [14] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, 2011). [15] L. D. Landau, Zh. Eksp. Teor. Fiz. 11, 19 (1937). [16] K. G. Wilson, Rev. Mod. Phys. 55, 583 (1983). [17] V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950). [18] B. Widom, J. Chem. Phys. 43, 3892 (1965). [19] M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976). [20] R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). [21] R. Ferrell, N. Menyhàrd, H. Schmidt, F. Schwabl, and P. Szépfalusy, Ann. Phys. 47, 565 (1968). [22] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977). [23] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod. Phys. 69, 315 (1997). [24] J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, 1996). [25] A. B. Harris, J. Phys. C 7, 1671 (1974). [26] R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969). [27] S. Guo, D. P. Young, R. T. Macaluso, D. A. Browne, N. L. Henderson, J. Y. Chan, L. L. Henry, and J. F. DiTusa, Phys. Rev. Lett. 100, 017209 (2008). [28] T. Westerkamp, M. Deppe, R. Küchler, M. Brando, C. Geibel, P. Gegenwart, A. P. Pikul, and F. Steglich, Phys. Rev. Lett. 102, 206404 (2009). [29] S. Ubaid-Kassis, T. Vojta, and A. Schroeder, Phys. Rev. Lett. 104, 066402 (2010). [30] D. S. Fisher, Phys. Rev. B 51, 6411 (1995). [31] A. P. Young and H. Rieger, Phys. Rev. B 53, 8486 (1996). [32] F. Iglói and H. Rieger, Phys. Rev. E 58, 4238 (1998). [33] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987). [34] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Comm. Math. Phys. 115, 477 (1988). [35] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010). [36] V. E. Korepin, Phys. Rev. Lett. 92, 096402 (2004). [37] J. A. Kjäll, M. P. Zaletel, R. S. K. Mong, J. H. Bardarson, and F. Pollmann, Phys. Rev. B 87, 235106 (2013). [38] C. C. Paige, J. Inst. Math. Appl. 10, 373 (1972). [39] Z. R. Hsu, Quantum Monte Carlo studies of the antiferromagnetic Ising spin chain in transverse and longitudinal fields, Master’s thesis, National Chengchi University (2013). [40] P. Pfeuty, Ann. Phys. 57, 79 (1970). [41] J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979). [42] H. C. Fogedby, J. Phys. C 11, 2801 (1978). [43] A. B. Zamolodchikov, Int. J. Mod. Phys. A 04, 4235 (1989). [44] V. Fateev, Phys. Lett. B 324, 45 (1994). [45] K. Binder, Z. Phys. B 43, 119 (1981). [46] K. Binder, Phys. Rev. Lett. 47, 693 (1981). [47] C. Dasgupta and S.-k. Ma, Phys. Rev. B 22, 1305 (1980). [48] E. Westerberg, A. Furusaki, M. Sigrist, and P. A. Lee, Phys. Rev. Lett. 75, 4302 (1995). [49] E. Westerberg, A. Furusaki, M. Sigrist, and P. A. Lee, Phys. Rev. B 55, 12578 (1997). [50] T. Hikihara, A. Furusaki, and M. Sigrist, Phys. Rev. B 60, 12116 (1999). [51] A. M. Goldsborough and R. A. Römer, Phys. Rev. B 89, 214203 (2014). [52] B. M. McCoy and T. T. Wu, Phys. Rev. 176, 631 (1968). [53] B. M. McCoy, Phys. Rev. Lett. 23, 383 (1969). [54] B. M. McCoy, Phys. Rev. 188, 1014 (1969). [55] R. Shankar and G. Murthy, Phys. Rev. B 36, 536 (1987). [56] F. Iglói and H. Rieger, Phys. Rev. B 57, 11404 (1998). [57] F. Iglói, R. Juhász, and H. Rieger, Phys. Rev. B 59, 11308 (1999). [58] D. S. Fisher and A. P. Young, Phys. Rev. B 58, 9131 (1998). [59] R. N. Bhatt and A. P. Young, Phys. Rev. Lett. 54, 924 (1985). [60] R. N. Bhatt and A. P. Young, Phys. Rev. B 37, 5606 (1988). [61] O. Motrunich, S.-C. Mau, D. A. Huse, and D. S. Fisher, Phys. Rev. B 61, 1160 (2000). [62] R. Juhász, Y.-C. Lin, and F. Iglói, Phys. Rev. B 73, 224206 (2006). [63] T. Vojta, Phys. Rev. Lett. 90, 107202 (2003). [64] F. Verstraete, D. Porras, and J. I. Cirac, Phys. Rev. Lett. 93, 227205 (2004). [65] I. P. McCulloch, ArXiv e-prints (2008), arXiv:0804.2509 [cond-mat.str-el] . [66] D. Pekker, G. Refael, E. Altman, E. Demler, and V. Oganesyan, Phys. Rev. X 4, 011052 (2014). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50890 | - |
| dc.description.abstract | 在本論文中,我們針對處於外加橫場與縱場中的反鐵磁易辛鏈進行一系列的研究。在均勻系統中,我們利用以矩陣乘積態和矩陣乘積算符詮釋的密度矩陣重整化群找到系統的基態,並且結合我們所發現之高次方序參量矩陣乘積算符來計算出基態的Binder比值。計算結果顯示系統的反鐵磁-順磁相變在縱場非零時仍然存在。此外,我們也使用樹狀張量網絡語言下的強無序重整化群計算出無序系統中的基態,並從其計算出的Binder比值結果中發現臨界點在縱場出現時即被破壞。我們認為這樣的現象是來自於縱場在無序系統中生成的鐵磁局域對整體反鐵磁量子相變的破壞。此外,我們也計算了能隙和端點關聯函數對無序組態的分布,並由此觀察無窮隨機不動點在臨界點的行為以及Griffiths相在無序相裡的表現。無序系統的動力學指數也可以由這些分布的有限尺寸標度來得到。 | zh_TW |
| dc.description.abstract | In this thesis, we study the quantum phase transitions of 1D antiferromagnetic (AFM) Ising model in the presence of transverse and longitudinal fields. We first consider the clean model which is homogeneous over the whole chain. The ground state is obtained by implementing the density matrix renormalization group (DMRG) in the fashion of matrix product states (MPS) and matrix product operators (MPO). With the discovery of MPO for powers of order paramter, we compute the Binder cumulant for ground state and use it to determine the critical point. The results show that the separation of AFM and paramagnetic (PM) phases extends to the nonzero longitudinal field regime. Next, we add disorder to the system by randomly choosing spin couplings and transverse fields in certain ranges. After deriving the ground state with tree tensor network strong disorder renormalization group (TSDRG), we find that the behavior of Binder cumulant shows the destruction of phase transition in nonzero longitudinal field regime. This phenomena is explained by the emergence of ferromagnetic (FM) rare regions. We also consider the distribution of energy gaps and end-end correlation functions over disorder realizations, which shows infinite randomness behavior at the critical point and Griffiths phase behavior in the disordered phase. The dynamical exponent can be determined from the finite-size scaling. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:04:40Z (GMT). No. of bitstreams: 1 ntu-105-R03222006-1.pdf: 2523183 bytes, checksum: e74506e95effe9c9b6bc80ddd33f8b24 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 iii
摘要 v Abstract vi 1 Introduction 1 2 Phase Transition 3 2.1 Basics of Phase Transition 3 2.1.1 Order of Phase Transition 3 2.1.2 Landau Theory and Critical Behavior 5 2.2 Quantum Phase Transition 7 2.3 Effect of Disorder on Phase Transition 9 2.3.1 Harris Criterion 9 2.3.2 Griffiths Singularity 10 3 Tensor Network Theory 12 3.1 The AKLT State 12 3.2 Tensor Network and Entanglement 15 3.3 Matrix Product State 19 3.3.1 Schmidt Decomposition 19 3.3.2 Construction of Matrix Product State in Canonical Form 21 3.4 Matrix Product Operator 27 3.4.1 Construction of Matrix Product Operator 27 4 Density Matrix Renormalization Group 30 4.1 Consideration of Environment 30 4.2 Infinite-Size Algorithm 32 4.3 Finite-size Algorithm 36 5 Antiferromagnetic Ising Chain in External Fields 39 5.1 Model 39 5.2 Binder Cumulant 41 5.2.1 A Good Tool for Locating the Critical Point 41 5.2.2 Matrix Product Operator for High Order Moments 42 5.3 Computation Results 45 6 Tree Tensor Network Strong Disorder Renormalization Group 50 6.1 Conventional Strong Disorder Renormalization Group 50 6.2 Tree Tensor Network Strong Disorder Renormalization Group 51 7 Disordered Transverse Field Ising Chain in Uniform Longitudinal Fields 54 7.1 Model 54 7.2 Absence of Longitudinal Field 56 7.2.1 Binder Cumulant 56 7.2.2 Distribution of Energy Gaps and End-End Correlation Functions 57 7.3 Nonzero Longitudinal Field 64 8 Summary 68 Bibliography 70 | |
| dc.language.iso | en | |
| dc.subject | 強無序重整化群 | zh_TW |
| dc.subject | 易辛鏈 | zh_TW |
| dc.subject | 量子相變 | zh_TW |
| dc.subject | 無序系統 | zh_TW |
| dc.subject | Binder比值 | zh_TW |
| dc.subject | 張量網絡 | zh_TW |
| dc.subject | 密度矩陣重整化群 | zh_TW |
| dc.subject | Griffiths奇點現象 | zh_TW |
| dc.subject | 易辛鏈 | zh_TW |
| dc.subject | 量子相變 | zh_TW |
| dc.subject | 無序系統 | zh_TW |
| dc.subject | Binder比值 | zh_TW |
| dc.subject | 張量網絡 | zh_TW |
| dc.subject | 密度矩陣重整化群 | zh_TW |
| dc.subject | 強無序重整化群 | zh_TW |
| dc.subject | Griffiths奇點現象 | zh_TW |
| dc.subject | tree tensor network strong disorder renormalization group (TSDRG) | en |
| dc.subject | tensor network | en |
| dc.subject | density matrix renormalization group (DMRG) | en |
| dc.subject | Griffiths singularities | en |
| dc.subject | quantum phase transition | en |
| dc.subject | disorder | en |
| dc.subject | Binder cumulant | en |
| dc.subject | tensor network | en |
| dc.subject | density matrix renormalization group (DMRG) | en |
| dc.subject | tree tensor network strong disorder renormalization group (TSDRG) | en |
| dc.subject | Transverse field Ising chain | en |
| dc.subject | Griffiths singularities | en |
| dc.subject | Transverse field Ising chain | en |
| dc.subject | quantum phase transition | en |
| dc.subject | disorder | en |
| dc.subject | Binder cumulant | en |
| dc.title | 張量網絡對外加場中反鐵磁易辛鏈之研究 | zh_TW |
| dc.title | Tensor Network Studies on Antiferromagnetic Ising Chain in External Fields | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林瑜琤(Yu-Cheng Lin),陳柏中(Pochung Chen) | |
| dc.subject.keyword | 易辛鏈,量子相變,無序系統,Binder比值,張量網絡,密度矩陣重整化群,強無序重整化群,Griffiths奇點現象, | zh_TW |
| dc.subject.keyword | Transverse field Ising chain,quantum phase transition,disorder,Binder cumulant,tensor network,density matrix renormalization group (DMRG),tree tensor network strong disorder renormalization group (TSDRG),Griffiths singularities, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU201600690 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-06 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
