Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50865
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor許耀文(Yao-Wen Hsu)
dc.contributor.authorTun-Hao Hanen
dc.contributor.author韓敦皓zh_TW
dc.date.accessioned2021-06-15T13:03:07Z-
dc.date.available2021-08-24
dc.date.copyright2016-08-24
dc.date.issued2016
dc.date.submitted2016-07-05
dc.identifier.citation(1) Bachelier, L. (2011). Louis Bachelier's theory of speculation: the origins of modern finance: Princeton University Press.
(2) Blattberg, R. C., & Gonedes, N. J. (1974). A Comparison of the Stable and Student Distributions as Statistical Models for Stock Prices. The Journal of Business, 47(2), 244-280.
(3) BONDT, W. F., & Thaler, R. H. (1987). Further evidence on investor overreaction and stock market seasonality. The Journal of Finance, 42(3), 557-581.
(4) Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1980). An Analysis of Variable Rate Loan Contracts. The Journal of Finance, 35(2), 389-403. doi:10.2307/2327398
(5) Cox, J. C., & Ross, S. A. (1976). The valuation of options for alternative stochastic processes. Journal of Financial Economics, 3(1), 145-166. doi:http://dx.doi.org/10.1016/0304-405X(76)90023-4
(6) Duffie, D., Pan, J., & Singleton, K. (2000). Transform Analysis and Asset Pricing for Affine Jump-Diffusions. Econometrica, 68(6), 1343-1376.
(7) Fama, E. F. (1963). Mandelbrot and the Stable Paretian Hypothesis. The Journal of Business, 36(4), 420-429.
(8) Fama, E. F. (1965). The Behavior of Stock-Market Prices. The Journal of Business, 38(1), 34-105.
(9) Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383-417. doi:10.2307/2325486
(10) Fama, E. F., & French, K. R. (1988). Permanent and Temporary Components of Stock Prices. Journal of Political Economy, 96(2), 246-273.
(11) Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of financial studies, 6(2), 327-343.
(12) Hull, J., & White, A. (1987). The Pricing of Options on Assets with Stochastic Volatilities. The Journal of Finance, 42(2), 281-300. doi:10.2307/2328253
(13) Junior, L. S., & Franca, I. D. P. (2011). Shocks in financial markets, price expectation, and damped harmonic oscillators. arXiv preprint arXiv:1103.1992.
(14) Kou, S. G. (2002). A jump-diffusion model for option pricing. Management science, 48(8), 1086-1101.
(15) Malinvaud, E. (1970). The Consistency of Nonlinear Regressions. The Annals of Mathematical Statistics, 41(3), 956-969.
(16) Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. The Journal of Business, 36(4), 394-419.
(17) Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1), 125-144. doi:http://dx.doi.org/10.1016/0304-405X(76)90022-2
(18) Osborne, M. M. (1959). Brownian motion in the stock market. Operations Research, 7(2), 145-173.
(19) Poterba, J. M., & Summers, L. H. (1988). Mean reversion in stock prices. Journal of Financial Economics, 22(1), 27-59. doi:http://dx.doi.org/10.1016/0304-405X(88)90021-9
(20) Samuelson, P. A. (1965). Proof that properly anticipated prices fluctuate randomly. IMR; Industrial Management Review (pre-1986), 6(2), 41.
(21) Shone, R. (2002). Economic Dynamics: Phase diagrams and their economic application: Cambridge University Press.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50865-
dc.description.abstract效率市場假說是經濟學很重要的假說。在效率市場的架構下,關於股票的所有資訊都已經反映在股價上,股價只會因為未來的、隨機的資訊而改變。此假說為股價的隨機漫步行為定下了基礎,使得財務學家開始需要利用隨機過程去描述股價的變化。
其中最簡單又經典的模型稱作幾何布朗運動,他能捕捉到股價的隨機性,也能保證過程不會讓股價低於0元,且其常態假設讓此模型很便於計算。然而此模型也並非完美,許多實證研究證實股價的走勢並不如幾何布朗運動所描述。
舉例而言,股價偶爾會有飆漲或崩跌等情況,而幾何布朗運動是連續的,出現如此大幅度的波動的機率微乎其微。根據歷史資料,飆漲或崩跌的次數早已遠遠超出幾何布朗運動所預測的。
另一個幾何布朗運動無法描述的特色是均值回歸現象。當股價出現太高或太低的價位時,市場通常會將價格修正回均值附近。然而幾何布朗運動的增幅是對稱的常態,在出現過高或過低價位時,股價上漲或下跌的機率還是相同,與實際市場狀況不符。
財務學家發明很多其他的模型去修正幾何布朗運動這些缺點,例如Ornstein-Uhlenbeck 模型使得隨機過程擁有均值回歸的現象,jump-diffusion模型使得股價能有不連續的跳點,affine jump-diffusion使股價既能夠均值回歸,又能夠有不連續的跳點。
近年來行為財務學成為顯學,越來越多人相信市場的無效率性,投資人往往會過度反應、過度交易,使得股價不會均值回歸,而有振盪的行為。本論文將基於阻尼簡諧振盪的架構,建立一個新的隨機過程,承襲以往模型之精神,同時描述此類振盪行為。
zh_TW
dc.description.abstractIn financial economics, the efficient-market hypothesis is well known for stating market behavior. Under this hypothesis, asset prices fully reflect all historical information, which implies that only new relevant information affects market prices. Investors’ reactions to the information is random and in a normally distributed pattern so that the change on the market price is also normally distributed. This is a strong argument for the use of geometric Brownian motion (GBM) on modeling stock prices.
However, GBM is not a completely realistic model, in particular it fails to describe some properties of stock prices. One is that GBM is a continuous path through time, but in real life, stock price often show jumps. The other is the mean-reverting property. When stock price is far from its equilibrium due to some shocks, it will have a high chance to be adjusted to its equilibrium nearby, but GBM will still follow the trend even in an unreasonable price level.
There have been several models conducted to modify GBM, some examples like Ornstein-Uhlenbeck model for mean-reverting property, jump-diffusion model for discontinuity, and affine jump-diffusion model for both.
Recently, more and more economists believes the inefficiency of the market. Investors predictably overreact to new information, creating a large effect on the stock price, making the price oscillate. This kind of oscillation has not been described by those classical models.
My thesis is to discuss the dynamic of the oscillation, and introducing a process in the framework of damped harmonic oscillation.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:03:07Z (GMT). No. of bitstreams: 1
ntu-105-R03h41010-1.pdf: 1074271 bytes, checksum: 4d0d22ff43b9cfe0cf52ca396171930c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
ABSTRACT IV
目錄 V
第一章 緒論 1
1.1 研究動機及目的 1
1.2 論文結構與研究流程 3
第二章 文獻探討 4
2.1 股價隨機過程 4
2.2 阻尼簡諧振盪模型 8
2.3 參數估計方法 12
第三章 模型研究 14
3.1 模型理論架構 14
3.2 模型理論解 16
3.3 機率分配性質 19
3.4 參數估計 21
第四章 研究結果 26
4.1 模擬參數估計 26
4.2 實際資料 35
第五章 結論 39
5.1 結論 39
5.2 建議 40
參考文獻 41
附錄 43
附錄1 43
附錄2 50
dc.language.isozh-TW
dc.title股價衝擊隨機過程:應用阻尼簡諧振盪zh_TW
dc.titleStochastic Process for Shocks in Financial Markets: An Application of Damped Harmonic Oscillationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡宛珊(Wan-Shan Tsai),盧信昌(Hsin-Chang Lu)
dc.subject.keyword阻尼簡諧振盪,股價衝擊,均值回歸,隨機過程,zh_TW
dc.subject.keywordDamped harmonic oscillation,Shocks,Mean-revert,Stochastic process,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201600599
dc.rights.note有償授權
dc.date.accepted2016-07-07
dc.contributor.author-college共同教育中心zh_TW
dc.contributor.author-dept統計碩士學位學程zh_TW
dc.date.embargo-terms2300-01-01
dc.date.embargo-lift2300-01-01-
Appears in Collections:統計碩士學位學程

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
1.05 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved