Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50861
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳宇(Bing-Yu Chen)
dc.contributor.authorWei-Tse Leeen
dc.contributor.author李維哲zh_TW
dc.date.accessioned2021-06-15T13:02:52Z-
dc.date.available2017-07-25
dc.date.copyright2016-07-25
dc.date.issued2016
dc.date.submitted2016-07-07
dc.identifier.citation[1] Kolor. http://www.kolor.com/.
[2] Videostitch. http://www.video-stitch.com.
[3] M. Brown and D. G. Lowe. Automatic panoramic image stitching using invariant features. International Journal on Computer Vision, 74(1):59–73, 2007.
[4] L. Chen, X. Wang, and X. Liang. An effective video stitching method. In Computer Design and Applications (ICCDA), 2010 International Conference on, volume 1, pages V1–297. IEEE, 2010.
[5] X. Cui, Q. Liu, and D. Metaxas. Temporal spectral residual: Fast motion saliency detection. In Proceedings of the 17th ACM International Conference on Multimedia, MM ’09, pages 617–620. ACM, 2009.
[6] M. A. El-Saban, M. Refaat, A. Kaheel, and A. Abdul-Hamid. Stitching videos streamed by mobile phones in real-time. In Proceedings of the 17th ACM International Conference on Multimedia, MM ’09, pages 1009–1010, 2009.
[7] S. Fibbi, L. D. Spano, F. Sorrentino, and R. Scateni. Wobo: Multisensorial travels through oculus rift. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, pages 299–302. ACM, 2015.
[8] M. Fujita and T. Harada. Foveated real-time ray tracing for virtual reality headset. Technical report, 2014.
[9] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3d graphics. ACM Transactions on Graphics, 31(6):164:1 – 164:10, 2012.
[10] C. Guo and L. Zhang. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Transaction on Image Processing, 19(1):185–198, 2010.
[11] E. Horvitz and J. Lengyel. Perception, attention, and resources: A decision-theoretic approach to graphics rendering. In UAI ’97: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, Brown University, Providence, Rhode Island, USA, August 1-3, 1997, pages 238–249, 1997.
[12] K.-C. Huang, P.-Y. Chien, C.-A. Chien, H.-C. Chang, and J.-I. Guo. A 360-degree panoramic video system design. In VLSI Design, Automation and Test (VLSIDAT), 2014 International Symposium on, pages 1–4. IEEE, 2014.
[13] W. Jiang and J. Gu. Video stitching with spatial-temporal content-preserving warping. In CVPR Workshops, pages 42–48, 2015.
[14] S. Kasahara, S. Nagai, and J. Rekimoto. Livesphere: immersive experience sharing with 360 degrees head-mounted cameras. In Proceedings of the adjunct publication of the 27th annual ACM symposium on User interface software and technology, pages 61–62. ACM, 2014.
[15] W.-S. Liao, T.-J. Hsieh, and Y.-L. Chang. Gpu parallel computing of spherical panorama video stitching. In Parallel and Distributed Systems (ICPADS), 2012 IEEE 18th International Conference on, pages 890–895. IEEE, 2012.
[16] K. Lin, S. Liu, L.-F. Cheong, and B. Zeng. Seamless Video Stitching from Hand-held Camera Inputs. Computer Graphics Forum, 35, 2016.
[17] V. Mahadevan and N. Vasconcelos. Spatiotemporal saliency in dynamic scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(1):171–177, Jan 2010.
[18] T. Mauthner, H. Possegger, G. Waltner, and H. Bischof. Encoding based saliency detection for videos and images. In CVPR, pages 2494–2502. IEEE Computer Society, 2015.
[19] F. Perazzi, A. Sorkine-Hornung, H. Zimmer, P. Kaufmann, O. Wang, S. Watson, and M. H. Gross. Panoramic video from unstructured camera arrays. Computer Graphic Forum, 34(2):57–68, 2015.
[20] B. Schauerte and R. Stiefelhagen. Quaternion-based spectral saliency detection for eye fixation prediction.In Proceedings of the 12th European Conference on Computer Vision (ECCV), pages 116–129, Firenze, Italy, October 7-13 2012.
[21] N. T. Swafford, D. Cosker, and K. Mitchell. Latency aware foveated rendering in unreal engine 4. In Proceedings of the 12th European Conference on Visual Media Production, pages 17:1–17:1, 2015.
[22] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical report, International Journal of Computer Vision, 1991.
[23] J. Zaragoza, T.-J. Chin, M. S. Brown, and D. Suter. As-projective-as-possible image stitching with moving dlt. In CVPR, pages 2339–2346. IEEE Computer Society, 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50861-
dc.description.abstract近年來,虛擬實境(VR) 成為時下最迷人的技術, 尤其是沈浸式虛擬實境更是成為眾所矚目的焦點。而要生成這樣的沈浸式虛擬實境的內容,通常必須在現實的場景中利用360 度全景拍攝的方式來產生。儘管現在已經有許多拍攝裝置可以使用,但若是在高畫質的狀態下,由於運算量非常龐大,要即時地拍攝360 度全景影像並以高畫質顯示仍是非常有挑戰性的。在此我們提出了名為中央窩影像串接法的框架,定義了如何決定影像中的各個部份需要以多高的畫質去處理的方法。在這框架中主要可以分為兩個部份,其一是以人眼視覺的理論基礎去定義的敏銳程度映射函數,其二是基於影像內容對人類視覺的顯著程度來定義的顯著程度映射函數。我們的方法可以以多臺相機拍攝的內容作為輸入,即時地串接成高畫質的全景影片並串流到客戶端的裝置上。速度方面,我們使用了圖形處理器來平行化演算法已達到即時運算的層級。畫質方面,我們做了使用者經驗調查來證明我們產生出的全景影像的畫質並不因為加速而有顯著的下降。我們最終實做了我們的系統於Google Cardboard 上,並在速度上相較於原方法有六倍以上的提昇。zh_TW
dc.description.abstractIn recent years, virtual reality (VR) becomes one of the most fascinating technologies where real-time immersion experience is in the spotlight. In those applications, the contents are usually generated by creating a 360◦video panorama of a real-world scene. Despite that many capture devices are released, getting high-resolution panoramas and display of a virtual world at
real-time update rates are still very challenging since it is a computationally demanding paradigm. In this paper, we proposed a real-time 360◦video foveated stitching framework, indicating what objects in a scene should be represented at what detail level. Our foveated stitching consists of two major parts; the acuity map and the saliency map. The acuity map is calculated taking into considerations the characteristics of the human visual system, while the saliency map is calculated using theories from the field of visual attention. Our innovative solution takes multiple cameras inputs and creates a high-resolution panoramic video in real-time that can be streamed directly to the client. We parallelize the algorithm on a GPU to achieve a responsive interface and validate our results using user study. Our system accelerate graphics computation by a factor of 6 on a Google Cardboard display.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:02:52Z (GMT). No. of bitstreams: 1
ntu-105-R03944008-1.pdf: 10248997 bytes, checksum: 844e727f1715559bdb7b724dd820d528 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書i
致謝ii
Acknowledgements iii
摘要iv
Abstract v
1 Introduction 1
2 Related Work 3
2.1 Panoramic Video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Fast Video Stitching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Video Saliency Detection. . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Virtual Reality Panoramas. . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Commercial Software. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.6 Perceptually Lossless Rendering. . . . . . . . . . . . . . . . . . . . . . . 5
3 Overview 7
3.1 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Panoramas Projective Geometry . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Transmitting and Rendering . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Core Algorithm 11
4.1 Perceptual Modulated Stitching . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 System Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Foveated Stitching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Saliency-aware Level of Detail . . . . . . . . . . . . . . . . . . . . . . . 14
5 Implementation 17
6 Experiments 18
6.1 Data Setups and Implementation Details. . . . . . . . . . . . . . . . . . . 18
6.2 User Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 System Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.4 GPU Acceleration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 Comparison with Commercial Software. . . . . . . . . . . . . . . . . . . 22
7 Discussion 24
7.1 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8 Conclusion 26
References 27
dc.language.isoen
dc.subject虛擬實境zh_TW
dc.subject實時zh_TW
dc.subject全景zh_TW
dc.subject360zh_TW
dc.subject實時zh_TW
dc.subject全景zh_TW
dc.subject360zh_TW
dc.subject虛擬實境zh_TW
dc.subject360en
dc.subjectvirtual realityen
dc.subject360en
dc.subjectpanoramaen
dc.subjectreal-timeen
dc.subjectpanoramaen
dc.subjectvirtual realityen
dc.subjectreal-timeen
dc.title即時生成360 度虛擬實境全景影片之中央窩影像串接法zh_TW
dc.titleHigh-resolution 360◦Video Foveated Stitching for Real-time VRen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee紀明德(Ming-Te Chi),賴祐吉(Yu-Chi Lai)
dc.subject.keyword實時,全景,360,虛擬實境,zh_TW
dc.subject.keywordreal-time,panorama,360,virtual reality,en
dc.relation.page29
dc.identifier.doi10.6342/NTU201600746
dc.rights.note有償授權
dc.date.accepted2016-07-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
10.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved