Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50837
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宏(Hung Chen)
dc.contributor.authorChi-Shian Daien
dc.contributor.author戴齊賢zh_TW
dc.date.accessioned2021-06-15T13:01:22Z-
dc.date.available2016-07-25
dc.date.copyright2016-07-25
dc.date.issued2016
dc.date.submitted2016-07-11
dc.identifier.citationReferences
Candes, E. and Tao, T. (2005). Decoding by Linear Programming. IEEE Transactions on Information Theory, 51(12):4203–4215.
Davidson, K. R. and Szarek, S. J. (2001). Local Operator Theory, Random Matrices and Banach Spaces. Handbook of the Geometry of Banach Spaces, 1:317–366.
Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32(2):407–499.
Johnstone, I. M. (2001). Chi-square oracle inequalities. State of the Art in Probability and Statistics, 36:399–418.
Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional by model selection. Annals of Statistics, 28(5):1302–1338.
Lockhart, R., Taylor, J., Tibshirani, R. J., and Tibshirani, R. (2014). A significance test for the lasso. Annals of Statistics, 42(2):413–468.
Tibshirani, R. (1994). Regression Selection and Shrinkage via the Lasso. Journal of the Royal Statistical Society B, 58(1):267–288.
Tibshirani, R. J. (2013). The lasso problem and uniqueness. Electronic Journal of Statistics, 7(1):1456–1490.
Wainwright, M. J. (2009). Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using L1-Constrained Quadratic Programming(Lasso). IEEE Transactions on Information Theory, 55(5):2183–2202.
Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. The Journal of Machine Learning Research, 7:2541–2563.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50837-
dc.description.abstract在高維度線性稀疏模型下,Lasso的軌跡解是相當複雜的。採用Lasso的同時,為了選擇微調參數$lambda$,研究Lasso的軌跡解是極為重要的。本文中,當微調參數$lambda$從無限大遞減時,我們給了一個充分條件使得Lasso的軌跡解的支集遞增直到此支集覆蓋住稀疏集(sparsity patten)。根據這個性質,我們可以用變異數分解法來決定微調參數$lambda$要選多少。
Lockhart(2014) 為了決定微調參數$lambda$而提出了 extit{共變異檢定統計} (covariance test statistic)。然而,他們並沒有強調:是否此序貫假設檢定能一路拒絕虛無假設,直到Lasso的解的支集覆蓋住稀疏集(sparsity patten)?為了回答這個問題,我們證明了Lasso的軌跡解有以下的特性,當微調參數$lambda$從無限大遞減時,變數會根據訊號強弱依序進入Lasso的支集。
而我們可以根據進入Lasso的支集的先後來判斷訊號的重要性。此外根據以上的性質,我們可以證明 extit{共變異檢定統計}不會乏適 (underfitting).
zh_TW
dc.description.abstractIn the high dimensional sparse linear regression setting, the Lasso solution path would be rather complicated. And while exploiting Lasso, to choose the tuning parameter $lambda$, analyzing the Lasso solution path is crucial. In this thesis, as the tuning parameter $lambda$ decreases from infinity, we provide a sufficient condition such that the support of the Lasso solution increases until its support recover the sparsity pattern. With this property, exploiting variance decomposition could determine which parameter $lambda$ should we choose.
Lockhart2014 proposed the covariance test statistic of Lasso to choose the parameter $lambda$. However, they pay little attention to whether the sequential hypothesis testing could reject the null hypothesis until it recovers the sparsity pattern. In order to deal with this issue, we show that the Lasso solution path would have the ordering property by which we could assess the importance of regressors and the assessment is identical to the oracle importance. And with this property, covariance test statistic would not be underfitting.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:01:22Z (GMT). No. of bitstreams: 1
ntu-105-R03246006-1.pdf: 521643 bytes, checksum: dfcf4b5319cfd84ff85f55462fba046a (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . .. 1
1.1 The Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Properties of Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Goal 1: The Increasing Property of the Lasso Path . . . . . .. .7
2.1 Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Step 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Cross-validation with Dividing Observed Samples . . . . . . . . . . . . . 11
3 Goal 2: The Ordering Property of the Lasso Path . . . . . . . . . . . . . . . .13
3.1 Check (a): Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Check (b): Lower bound of knots( 1;…; q) . . . . . . . . . . . . . . . 18
3.3 The Ordering Property of the Lasso Path . . . . . . . . . . . . . . . . . . 19
3.4 Necessary Ratio Gaps for the Ordering Property . . . . . . . . . . . . . . 20
4 Goal 3: Stopping Rules . . . . . . . . . . . . . . 21
4.1 Covariance Test Statistic . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Cp-Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Discussion . . . . . . . . . . . . . . 24
6 Proofs and Lemmas 25
6.1 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.4 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5 Lemma 6.9:Bound on the maximum of iid normal random variables . . . 43
6.6 Lemma 6.10:Bound on Eigenvalues of Wishart distribution . . . . . . . 43
6.7 Lemma 6.11:Tail bounds of chi-square . . . . . . . . . . . . . . . . . . . 44
6.8 Lemma 6.12:Tail probability bound of sum of Folded Normal Distributions 44
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
dc.language.isoen
dc.subject最小角回歸zh_TW
dc.subject高維度線性模型zh_TW
dc.subject壓所感知zh_TW
dc.subject模型選擇zh_TW
dc.subjectL1 正規化zh_TW
dc.subject重要性判別zh_TW
dc.subject共變異檢定統計zh_TW
dc.subject高維度線性模型zh_TW
dc.subject壓所感知zh_TW
dc.subject模型選擇zh_TW
dc.subjectL1 正規化zh_TW
dc.subject最小角回歸zh_TW
dc.subject重要性判別zh_TW
dc.subject共變異檢定統計zh_TW
dc.subjectLasso pathen
dc.subjectModel selectionen
dc.subjectL1-constraintsen
dc.subjectCompressed sensingen
dc.subjectHigh dimensional linear regressionen
dc.subjectimportant assessment.en
dc.subjectLeast angle regressionen
dc.subjectHigh dimensional linear regressionen
dc.subjectModel selectionen
dc.subjectL1-constraintsen
dc.subjectCompressed sensingen
dc.subjectLasso pathen
dc.subjectLeast angle regressionen
dc.subjectimportant assessment.en
dc.title透過Lasso於高維度線性模型之下
訊號的重要性判讀
zh_TW
dc.titleLasso and Its Oracle Properties in Importance Assessment of Regressorsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee銀慶剛(Ching-Kang Ing),江金倉(Chin-Tsang Chiang)
dc.subject.keyword高維度線性模型,壓所感知,模型選擇,L1 正規化,最小角回歸,重要性判別,共變異檢定統計,zh_TW
dc.subject.keywordHigh dimensional linear regression,Model selection,L1-constraints,Compressed sensing,Lasso path,Least angle regression,important assessment.,en
dc.relation.page47
dc.identifier.doi10.6342/NTU201600735
dc.rights.note有償授權
dc.date.accepted2016-07-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
509.42 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved