Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50794
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李白飛 教授(Pjek-Hwee Lee)
dc.contributor.authorShao-Chi Leeen
dc.contributor.author李詔琦zh_TW
dc.date.accessioned2021-06-15T12:58:48Z-
dc.date.available2016-07-26
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-13
dc.identifier.citation[1] E.P. Armendariz, H.K. Koo, J.K. Park. Isomorphic Ore extensions. Comm. Algebra.15(12)(1987), 2633–2652. 20
[2] Smoktunowicz, A. Polynomial rings over nil rings need not be nil. Journal of Algebra. 233 (2003), 427–436.
[3] A. M. Babic. The Levitzki radical. (Russian) Dokl. Akad. Nauk., SSSR 126 (1959).
242-243.
[4] G.F. Birkenmeier, H.E. Heatherly, E.K. Lee. Completely prime ideals and associated radicals. World Sci. Publ. (1993), 102–129.
[5] G.F. Birkenmeier, J.Y. Kim, J.K. Park. Regularity conditions and the simplicity of prime factor rings. J. Pure Appl. Algebra. 115 (1997), 213–230.
[6] G.F. Birkenmeier, H.E. Heatherly, E.K. Lee. ”Completely prime ideals and radicals in near-rings”. Proc. Near-Rings and Near-Fields Conf. Kluwer, (1995 )
[7] W.D. Burgess, A. Lashgari and A. Mojiri. Elements of minimal prime ideals in general rings. Advances in Ring Theory, Trends in Mathematics (2010), 69-81.
[8] N. J. Divinsky. ”Rings and Radicals”. Mathematical Expositions No. 14 (University of Toronto Press, Toronto 1965 )
[9] E. S. Golod. ”Some ploblems of Burnside type”. (Russian) 1968 Proc. Internet. Congr. Math. (Moskow, 1966), 284-289.
[10] B. J. Gardner, R. Wiegandt. ”Radical Theory of Rings”. Chapman & Hall/CRC Pure and Applied Mathematics( Marcel Dekker, Inc. 2003)
[11] C. Y. Hong, N. K. Kim, Y. Lee. On LN rings and topological properties of prime spectra. J. Algebra Appl. 15 (2016), 1650102.
[12] C. Y. Hong, N. K. Kim, Y. Lee. Near-rings in which each element is a power of itself. Bull. Austral. Math. Soc.2 (1970), 2633-2652.
[13] C. Y. Hong, H. K. Kim, N. K. Kim, T. K. Kwak, Y. Lee, and K. S. Park. Rings whose nilpotent elements form a Levitzki radical ring. J. Algebra 35 (2007), no.4,
1379–1390.
[14] J. Han, Y. Lee, S. P. Yang. Rings over which polynomial rings are NI. Proc. 6th CJK Conf. Ring theory.(2011). 1-9.
[15] S. U. Hwang, Y. C. Jeon, Y. Lee. Structure and topological condition of NI rings. J. Algebra 302 (2006), 186–199. 21
[16] K. Koh. On a representation of a strongly harmonic ring by sheaves. Pacific J. Math 41 (1972), 459–468.
[17] N. K. Kim, T. K. Kwak. Minimal prime ideals in 2-primal rings.Math. Japon. 50 (1999), no.3, 415–420.
[18] T. Y. Lam, ”A first course in noncommutative rings”. Graduate Texts in Mathematics, 131. Springer-Verlag, (New York, 1991.)
[19] J. Lambek. On the representation of modules by sheaves of factor modules. Canad. Math. Bull.14 (1971), 359-368.
[20] Y. Lee, C Huh, K. Kim Questions on 2-primal rings. Comm. Algebra. 26(1998). 595-600.
[21] G. Marks. On 2-primal Ore extensions. Comm. Algebra 29 (2001), 2113–2123.
[22] G. Marks. Skew polynomial rings over 2-primal rings. Comm. Algebra 27(9) (1999), 4411–4423.
[23] S. H. Sun. Noncommutative rings in which every prime ideal is contained in a unique maximal ideal. J. Pure Appl. Algebra 76 (1991), no. 2, 179–192. 22
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50794-
dc.description.abstract經由2-primal ring及NI ring的拓撲結構,我們研究一種新的類型的環,滿足所有冪零元形成一個局部冪零理想,並稱之為NL ring。本文首先介紹NL ring的基本性質,接著研究NL ring和局部強質理想之間的關係,最後,探討NL ring下的拓樸結構。zh_TW
dc.description.abstractMotivated by 2-primal rings, NI rings and their associated topological structures, we consider a new class of rings, NL rings, in which the nilpotent elements form a locally nilpotent ideal. We first introduce some basic properties of NL rings, and then study the relationships between NL rings and locally strong prime ideals. Lastly, we give the topological structures induced by NL rings.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:58:48Z (GMT). No. of bitstreams: 1
ntu-105-R03221001-1.pdf: 389178 bytes, checksum: 226ce3ef2139aec68876b56217c1b2a1 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents1.Introduction (p.1)
2.Basic Properties of NL rings (p.2)
3.Polynomials over NL rings (p.8)
4.Locally Strong Prime Ideals (p.13)
5.Topological Properties of Prime Spectra (p.19)
References (p.26)
dc.language.isoen
dc.subject局部冪零理想zh_TW
dc.subject局部強質理想zh_TW
dc.subject NL 環zh_TW
dc.subjectlspmzh_TW
dc.subjectL 正規zh_TW
dc.subjectLevitzki radicalzh_TW
dc.subjectlocally strong prime idealen
dc.subjectL-normalen
dc.subjectlspmen
dc.subjectlocally nilpotent idealen
dc.subjectLevitzki radicalen
dc.subjectNL ringen
dc.title冪零元與局部冪零理想zh_TW
dc.titleOn nilpotent elements and locally nilpotent idealsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡援宗 教授(Yuan-Tsung Tsai),劉承楷(Cheng-Kai Liu)
dc.subject.keyword局部冪零理想,Levitzki radical,L 正規,lspm, NL 環,局部強質理想,zh_TW
dc.subject.keywordlocally nilpotent ideal,Levitzki radical,L-normal,lspm,NL ring,locally strong prime ideal,en
dc.relation.page27
dc.identifier.doi10.6342/NTU201600882
dc.rights.note有償授權
dc.date.accepted2016-07-13
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
Appears in Collections:數學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
380.06 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved