Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5073
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇南維(Nan-Wei Su)
dc.contributor.authorBo-Yuan Wuen
dc.contributor.author吳博元zh_TW
dc.date.accessioned2021-05-15T17:51:34Z-
dc.date.available2019-09-05
dc.date.available2021-05-15T17:51:34Z-
dc.date.copyright2014-09-05
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citation李淑芬。1997年。鹼性發酵食品。食品工業月刊。29:17-25
何幸容。2008年。納豆菌發酵豆奶的開發及其品質評估。國立中興大學食品暨應用生物科技學系碩士論文。
何曉雯。2012年。納豆菌對大豆異黃酮轉化之研究。國立台灣大學農業化學系研究所碩士論文。
周澤川。2008年。利用分子模版之技術自中國傳統藥材提煉異黃酮素之防癌藥劑。中醫藥學年報。26(1):125-160
連大進。1995年。台灣黑豆利用與生產展望。農業世界 147:39-42。
許元勲。2005年。納豆菌發酵製品介紹及國內研發現況。農業生技產業季刊。3:45-52。
蔡文福。1994年。大豆。雜糧作物各論。
常致綱。2006年。大豆異黃酮定量方法之改良及加工方式對大豆異黃酮種類轉換之研究。國立台灣大學農業化學系研究所碩士論文。
鄭光成。2005年。利用根黴菌之深部培養法開發機能性醱酵黑豆食品之研究。國立台灣大學微生物與生化學研究所碩士論文。 洪筱鈞。2008年。大豆中分離高純度Genistin之程序。國立高雄應用科技大學化學工程系碩士班論文。
林綉霞。2013年。利用微生物轉化生產水溶性大豆異黃酮條件之探討。國立台灣大學農業化學系研究所碩士論文。
新編中藥大辭典。1982年。第三冊。新文豐出版社,台南市。
Adlercreutz H, Bannwart C, Wahala K, Makela T, Brunow G, Hase T, Arosemena PJ, Kellis JT, Jr., Vickery LE (1993) Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. The Journal of steroid
69
biochemistry and molecular biology 44 (2):147-153
Adlercreutz H, Hockerstedt K, Bannwart C, Bloigu S, Hamalainen E, Fotsis T, Ollus A (1987) Effect of Dietary-Components, Including Lignans and Phytoestrogens, on Enterohepatic Circulation and Liver-Metabolism of Estrogens and on Sex-Hormone Binding Globulin (Shbg). J Steroid Biochem 27 (4-6):1135-1144. doi:Doi 10.1016/0022-4731(87)90200-7
Adlercreutz H, Honjo H, Higashi A, Fotsis T, Hamalainen E, Hasegawa T, Okada H (1991) Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. The American journal of clinical nutrition 54 (6):1093-1100
Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. The Journal of biological chemistry 262 (12):5592-5595
Albert A (1958) Chemical Aspects of Selective Toxicity. Nature 182 (4633):421-423. doi:Doi 10.1038/182421a0
Barnes S (1995) Effect of genistein on in vitro and in vivo models of cancer. The Journal of nutrition 125 (3 Suppl):777S-783S
Cowan MM (1999) Plant Products as Antimicrobial Agents. CLINICAL MICROBIOLOGY REVIEWS 12 (4):564-577
Chen Hsu, Hsiao-Wen Ho, Chi-Fon Chang, Shang-Ta Wang, Ting-Fang Fang, Ming Hsiung Lee, Nan-Wei Su,(2013) Soy isoflavone-phosphate conjugates derived by cultivating Bacillus subtilis var. natto BCRC 80517 with isoflavone, Food Research International 53, 487–495
Deak G MG, Lang I, Nekam K, Gonzalez-Cabello R, Gergely P, Feher J. (1990) Effects of two bioflavonoids on certain cellular immune reactions in vitro.
70
Acta Physiol 76 (2):113-121.
Dixon RA (2004) Phytoestrogens. Annual review of plant biology 55:225-261.
Dixon RA, Ferreira D (2002) Genistein. Phytochemistry 60 (3):205-211
GARNER A (1997) The effects of phytoestrogens on bone. Nutrition Research 17 (10):1617-1632
Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M (2000) Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. The Journal of nutrition 130 (7):1695-1699
JI Xun WJ, Zhang Lei, Zhao Lin-xiang, Jiang Hua-liang, Liu Hong (2013) Application of phosphates and phosphonates prodrugs in drug research and development. Acta Pharmaceutica Sinica 48 (5):621-634
Kishida T, Ataki H, Takebe M, Ebihara K (2000) Soybean meal fermented by Aspergillus awamori increases the cytochrome P-450 content of the liver microsomes of mice. Journal of agricultural and food chemistry 48 (4):1367-1372
Katavic, P. L., et al. (2007). Flavonoids as opioid receptor ligands: identification and preliminary structure-activity relationships. J Nat Prod 70(8): 1278-1282.
Kato, A., et al. (2008). Structure-activity relationships of flavonoids as potential inhibitors of glycogen phosphorylase. J Agric Food Chem 56(12): 4469-4473.
Kuo A, Cappelluti S, Cervantes-Cervantes M, Rodriguez M, Bush DS (1996) Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells. The Plant cell 8 (2):259-269. doi:10.1105/tpc.8.2.259
71
Lee, H., et al. (1994). The structure-activity relationships of flavonoids as inhibitors of cytochrome P-450 enzymes in rat liver microsomes and the mutagenicity of 2-amino-3-methyl-imidazo[4,5-f] quinoline. Mutagenesis 9(2): 101-106.
Murphy H-jWaPA (1994) Isoflavone Content in Commercial Soybean Foods. J Agric Food Chem 42 (8):1666-1673
Nagata C, Takatsuka N, Kawakami N, Shimizu H (2001) Soy product intake and hot flashes in Japanese women: results from a community-based prospective study. American journal of epidemiology 153 (8):790-793
Naim M, Gestetner B, Zilkah S, Birk Y, Bondi A (1974) Soybean isoflavones. Characterization, determination, and antifungal activity. Journal of agricultural and food chemistry 22 (5):806-810
Okura A, Arakawa H, Oka H, Yoshinari T, Monden Y (1988) Effect of genistein on topoisomerase activity and on the growth of [Val 12] Ha-ras-transformed NIH 3T3 cells. Biochemical and biophysical research communications 157 (1):183-189
Ososki AL, Kennelly EJ (2003) Phytoestrogens: a review of the present state of research. Phytotherapy research : PTR 17 (8):845-869. doi:10.1002/ptr.1364
P. A. Murphy and Wang, H. J. Isoflavone content in commercial soybean foods. Journal of Agricultural and Food Chemistry 1994, 42: 1666-1673.
Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annual review of nutrition 22:19-34.
Rostagno MA, Palma M, Barroso CG (2007) Microwave assisted extraction of soy isoflavones. Analytica chimica acta 588 (2):274-282.
Sesso HD, Liu S, Gaziano JM, Buring JE (2003) Dietary lycopene, tomato-based food products and cardiovascular disease in women. The Journal of nutrition 133
72
(7):2336-2341
Setchell KD, Cassidy A (1999) Dietary isoflavones: biological effects and relevance to human health. The Journal of nutrition 129 (3):758S-767S
Somekawa Y, Chiguchi M, Ishibashi T, Aso T (2001) Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstetrics and gynecology 97 (1):109-115
Tommos A Dobbins (2006). Process for isolating genistin from soybean isoflavones mixture. US patent, No7084263 B2.
Waldmann S, Almukainzi M, Bou-Chacra NA, Amidon GL, Lee BJ, Feng JF, Kanfer I, Zuo JZ, Wei H, Bolger MB, Lobenberg R (2012) Provisional Biopharmaceutical Classification of Some Common Herbs Used in Western Medicine. Mol Pharmaceut 9 (4):815-822.
Wang, L. C. (1971). Separation of soybean isoflavones from their 5-hydroxy derivatives by thin-layer chromatography. Anal Biochem 42(1): 296-298.
Xu X, Wang HJ, Murphy PA, Hendrich S (2000) Neither background diet nor type of soy food affects short-term isoflavone bioavailability in women. The Journal of nutrition 130 (4):798-801
Yang Z, Kulkarni K, Zhu W, Hu M (2012) Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anti-cancer agents in medicinal chemistry 12 (10):1264-1280
Chen, B. H., et al. (2008). A new approach to bioconversion reaction kinetic parameter identification. AIChE Journal 54(8): 2155-2163.
Sampaio, F. C., et al. (2005). Bioconversion of d-xylose to xylitol by Debaryomyces hansenii UFV-170: Product formation versus growth. Process Biochemistry 40(11): 3600-3606.
73
Song, H., et al. (2008). Modeling of batch fermentation kinetics for succinic acid production by Mannheimia succiniciproducens. Biochemical Engineering Journal 40(1): 107-115.
Ulanowska, K., et al. (2006). Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. Arch Microbiol 184(5): 271-278.
Verdrengh, M., et al. (2004). Phytoestrogen genistein as an anti-staphylococcal agent. Microbes and Infection 6(1): 86-92.
Wang, M., et al. (2013). An effective and green method for the extraction and purification of aglycone isoflavones from soybean. Food Science and Biotechnology 22(3): 705-712.
Zheng, B., A. J. Yegge, T. D. Bailey, Sullivan and L. James. Process for the isolation and purification of isoflavones. US Patent [5,679,806]. 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5073-
dc.description.abstract許多研究指出大豆異黃酮具有保健生理活性,為天然的植物雌激素。已知大豆中異黃酮可分為四類共12種化合物,含量最高的為malonylglucoside形式之異黃酮,其次為glucoside形式之異黃酮,而aglycone 形式的含量最少。本研究室先前篩選得到Bacillus subtilis BCRC 19679菌株,可將genistein、 daidzein、genistin及daidzin轉化成水溶性佳之Genistein-7-O-phosphate (G7P)和Daidzein-7-O-phosphate (D7P),推測能有效改善兩種異黃酮的生物可利用率。本研究室先前的研究係利用混和物形式進行轉化,對各別異黃酮的生物轉換尚未明瞭。本研究旨在探討Bacillus subtilis BCRC 19679對個別異黃酮生物轉化的情形,實驗分為兩部分,其一為製備genistein、daidzein、genistin及daidzin之回收程序,用以做為生物轉化之原料。另一為探討Bacillus subtilis BCRC 19679對上述異黃酮的生物轉化情形。結果顯示,中性氧化鋁可有效分離genistein及daidzein。經由本研究建立的程序,可由原料(genistein : 56 %,daidzein : 26 % )分離出genistein (純度:95 %;回收率:89 %) 及daidzein (純度:92 %;回收率:94 %)。鈣離子沉澱法可有效分離genistin及daidzin。可由原料 (genistin: 38 %,daidzin: 8 %) 得到genistin (純度:92 %;回收率:86 %) 及daidzin (純度:91 %;回收率:92 %)。分離純化程序在本研究已在本研究中被建立。
第二部分為分離出之各別異黃酮生物轉換之探討:B. subtilis BCRC 19679 對genistein有良好轉換效率,於500-2000 mg/L濃度區間,轉換率即大於90%。比轉換速率的最大值1890 μM g-1h-1發生於以500 mg/L genistein 為起始培養濃度、轉換6小時。G7P生成濃度最大值6700 μM 發生於以2000 mg/L genistein為起始培養濃度,轉換48小時,轉換率達到92 %。比生長速率最大值與G7P比生成速率有正相關性,屬於菌體連動型發酵模式。B. subtilis BCRC 19679 對daidzein有良好的轉換效率,於480-940 mg/L濃度區間,轉換率即大於 90 %。
iv
比轉換速率的最大值1400 μM g-1h-1發生於以1400 mg/L daidzein為起始培養濃度、轉換6小時。D7P生成濃度最大值4800 μM 發生於以2800 mg/L daidzein為起始培養濃度;轉換48小時,轉換率43%。比生長速率最大值與D7P比生成速率無連動性,屬於非菌體連動型發酵模式。B. subtilis BCRC 19679 對genistin有良好的轉換率,於1600-2400 mg/L genistin濃度區間,轉換率即大於90%。比轉換速率最大值340 μM g-1h-1發生於以1600 mg/L genistin 為起始濃度、轉換24小時。genistin會先轉換為genistein後,再轉換為G7P,為兩段式轉換模式。B. subtilis BCRC 19679 對daidzin之轉換率,於1540-1840 mg/L daidzin濃度區間,轉換率大於70%。比轉換速率最大值230 μM g-1h-1發生於以1840 mg/L daidzin 為起始濃度、轉換24小時。daidzin會先轉換為daidzein後,再轉換為D7P,為兩段式轉換模式,故可得知B. subtilis BCRC 19679同時具有水解glucosidic isoflavone及磷酸化aglyconic isoflavone的能力;所有以glucosidic isoflavone為基質的生物轉化組別皆有succinyl agluconic isoflavone的生成。
zh_TW
dc.description.abstractSoy isoflavones are the phytochemicals responsible for estrogenic activities observed in vitro and in vivo models. The beneficial effects of isoflavones include the reduction of serum lipids, increase of bone mineral density, relief of menopausal symptoms, and chemoprevention of mammary and prostate cancer and so on. A number of studies have revealed that the biological effects of isoflavones mainly attributed to their aglyconic forms rather than the glycosidic forms. However, aglycones have shown low bioavailability to humans due to their poor water solubility. In the previous work of our lab, a Bacillus subtilis strain designated as Bacillus subtilis BCRC 19679 showed the capability to convert daidzein and daidzin, as well as genistein and genistin into daidzein-7-O-phosphate (D7P) and genistein-7-O-phosphate (G7P). We considered that G7P and D7P could possess better bioavailability than aglyconic isoflavones. However, researches regarding individual isoflavone inclucding genistein, genistin, daidzein and daidzin that was transformed by B. subtilis BCRC 19679 are still not clear. The objective of this study is to explore the biotransformation of individual isoflavone by B. subtilis BCRC 19679. The experimental works consist of two parts. One is to develop the isolation procedure of individual isoflavone for further studies, and the other is to investigate the kinetic biotranformations of the isolated isoflavone by B. subtilis BCRC 19679. The results show neutral aluminum oxide is a promising and good-performing adsorbent for the separation of genistein and daidzein from aglyconic isoflavone mixture. After performing the separation in accordance with our procedure, genistein with 89% of recovery and 95% of purity, and daidzein 94% of recovery and 92 % of purity could be obtained from the raw material of aglyconic mixture containing 56% of genistein and 26% of daidzein. Moreover, genistin and daidzin can be separated effectively from glucosidic isoflavone mixture by means of a calcium precipitation
vi
process, and subsequently genistin with 86% of recovery and 92% of purity, and daidzin with 94% of recovery and 91% of purity could be obtained from the raw material of glucosidic mixture containing 38% of genistin and 8% of daidzin.
Reguarding of the biotransformation of B. subtilis BCRC 19679 with each isolated isoflavone, the results showed that the bioconversion of daidzein and genistein have been going well with higher than 90% of conversion rate at the end of 48-h incubation with the concentration range of 500 to 2000 mg /L for genistein and that of 480 to 640 mg /L for daidzein Moreover, for the specific conversion rate, the maximum value of 1890 μM g-1h-1 occurred at the 6th h culture broth with an initial concentration 500 mg/L of genistein, and 1400 μM g-1h-1for daidzein, the same as occurring at the 6th h culture broth with an initial concentration 1400 mg /L of daidzein. Moreover, at the end of 48-h incubation with initial substrate levels of 2000 mg/L for genistein and that of 2800 mg/L for daidzein, the coulture broth could contain maximum levels of 6700 μM for G7P and 4800 μM for D7P, respectively, The conversion rates for genistein and daidzein were 92% and 43% respectively. For the phosphorylation process with genistein by B. subtilis BCRC 19679, we observed specific growth rate was highly correlated to specific conversion rate, whereas this phenomenon did not be obsvered
when daidzein was used as the conversion substrate.
For isoflavone glucosides, the bioconversion of daidzin and genistin proceeded successfully with higher than 90% of conversion rate at the concentration range of 1600 to 2400 mg/L for genistin and that higher than 70% of conversion rate of 1540-1840 mg/L for daidzin at the end of 48-h incubation.Moreover for the specific conversion rate, the maximum value of 370 μM g-1h-1 occurred at the 24th h culture broth with an initial concentration 1840 mg/L of genistin, and 230 μM g-1h-1 for daidzin the same as occurring at the 24th h culture broth with an initial concentration
vii
1600 mg /L of daidzin . In this research, genistin was first hydrolyzed to aglyconic genistein, and then converted to G7P which represented a two-stage bioconversion which suggested B. subtilis BCRC 19679 enable both hydrolysis of β-glucosidic bond and phosphorylation. Besides, succinyl glucosidic isoflavones could be observed from all the culture broths that obtained from daidzin and genistin as a substrate.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:51:34Z (GMT). No. of bitstreams: 1
ntu-103-R01623009-1.pdf: 1923674 bytes, checksum: a36633f2546dc371987536b9eedc844f (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要...................................................................................................................... iii
Abstract ...................................................................................................................... V
目錄................................................................................................................................ I
圖目錄.......................................................................................................................... III
表目錄.......................................................................................................................... IV
縮寫表........................................................................................................................... V
第一章 前言.................................................................................................................. 6
第二章 文獻整理.......................................................................................................... 7
第一節、黃豆........................................................................................................ 7
第二節、植物性化學物質.................................................................................... 8
2-1 植物性雌激素 ........................................................................................ 8
2-2 類黃酮 .................................................................................................. 11
第三節、大豆異黃酮.......................................................................................... 13
3-1 異黃酮之生理活性 .............................................................................. 13
3-2 大豆異黃酮之吸收與代謝 .................................................................. 18
第四節、前驅藥物.............................................................................................. 23
第五節、分離與純化大豆異黃酮單體.............................................................. 25
5-1 分離去醣基大豆異黃酮genistein及daidzein ................................... 26
5-2 分離帶醣基大豆異黃酮 genistin及 daidzin ..................................... 27
第三章 材料與方法.................................................................................................... 28
第一節、實驗大綱.............................................................................................. 28
第二節、實驗材料.............................................................................................. 29
2-1 菌株 ...................................................................................................... 29
II
2-2 大豆異黃酮 .......................................................................................... 29
2-3試藥與溶劑 ........................................................................................... 29
2-4 培養基組成 .......................................................................................... 30
第三節、實驗儀器.............................................................................................. 31
第四節、分析方法.............................................................................................. 32
4-1 高效液相層析法之異黃酮分析條件 .................................................. 32
4-2 大豆異黃酮含量計算方式 .................................................................. 33
第五節、實驗方法.............................................................................................. 34
5-1 利用中性氧化鋁分離genistein及daidzein ....................................... 34
5-2 利用鈣離子沉澱法分離genistin及daidzin ....................................... 36
5-3 各別異黃酮單體純度計算及回收率計算 .......................................... 38
5-4各別異黃酮對B. subtilis BCRC 19679生長的影響........................... 39
5-5 B. subtilis BCRC 19679對各別異黃酮的生物轉化............................ 39
5-6 統計分析 .............................................................................................. 41
第四章 結果與討論.................................................................................................... 42
1. 分離genistein及daidzein.............................................................................. 42
2. 分離genistin及daidzin ................................................................................. 47
3. B. subtilis BCRC 19679轉換genistein及daidzein ....................................... 50
4. B. subtilis BCRC 19679轉換genistin及daidzin .......................................... 58
第五章 結論................................................................................................................ 66
第六章 參考文獻........................................................................................................ 68
附錄............................................................................................................................ 68
dc.language.isozh-TW
dc.title大豆中genistein、daidzein、genistin及daidzin
之分離程序及以Bacillus subtilis BCRC 19679
進行生物轉換之研究
zh_TW
dc.titleStudies on the isolations of genistein, daidzein, genistin and daidzin from soybean and their bioconversions by Bacillus subtilis BCRC 19679en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾玉明(Youk-Meng Choong),鄭光成(Kuan-Chen Cheng),陳錦樹(Chin-Shuh Chen),李敏雄(Ming-Hsiung lee)
dc.subject.keyword大豆異黃酮,daidzein-7-O-phosphate,genistein-7-O-phosphate,各別異黃酮,分離程序,zh_TW
dc.subject.keywordSoybean isoflavone,daidzein-7-O-phosphate,genistein-7-O-phosphate,isolation process,en
dc.relation.page108
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf1.88 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved