Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5072
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高文媛(Wen-Yuan Kao)
dc.contributor.authorYa-Lun Huangen
dc.contributor.author黃雅倫zh_TW
dc.date.accessioned2021-05-15T17:51:34Z-
dc.date.available2019-08-21
dc.date.available2021-05-15T17:51:34Z-
dc.date.copyright2014-08-21
dc.date.issued2014
dc.date.submitted2014-08-15
dc.identifier.citationAllen AM, Thorogood CJ, Hegarty MJ, Lexer C, Hiscock SJ. 2011. Pollen-pistil interactions and self-incompatibility in the Asteraceae: new insights from studies of Senecio squalidus (Oxford ragwort). Annals of Botany 108: 687-698.
Alvarez A, Pomar F, Sevilla MA, Montero MJ. 1999. Gastric antisecretory and antiulcer activities of an ethanolic extract of Bidens pilosa L. var. radiata Schult. Bip. Journal of Ethnopharmacology 67: 333-340.
Baker HG. 1955. Self-compatibility and establishment after 'long-distance' dispersal. Evolution 9: 347-349.
Baker HG, Stebbins GL. 1965. The genetics of colonizing species: proceedings. edn. New York, USA: Academic Press.
Ballard R. 1986. Bidens pilosa complex (Asteraceae) in North and Central America. American Journal of Botany 73: 1452-1465.
Barrett SCH. 2002. Sexual interference of the floral kind. Heredity 88: 154-159.
Baruch Z, Goldstein G. 1999. Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121: 183-192.
Begon M, Harper JL, Townsend CR. 1996. Ecology: Individuals, Populations and Communities. 3rd edn. Oxford: Blackwell Science.
Bertin RI, Newman CM. 1993. Dichogamy in Angiosperms. Botanical Review 59: 112-152.
Burns JH, Winn AA. 2006. A comparison of plastic responses to competition by invasive and non-invasive congeners in the Commelinaceae. Biological Invasions 8: 797-807.
Cerana MM. 2004. Flower morphology and pollination in Mikania (Asteraceae). Flora 199: 168-177.
Chai T-T, Ooh K-F, Ooi P-W, Chue P-S, Wong F-C. 2013. Leucaena leucocephala leachate compromised membrane integrity, respiration and antioxidative defence of water hyacinth leaf tissues. Botanical Studies 54: 8.
Chang T-C, Yang S-S. 2003. Methane emission from wetlands in Taiwan. Atmospheric Environment 37: 4551-4558.
Chiang M-Y, Hsu L-M, Yuan C-I, Chen F-Y, Chiang Y-J. 2003. The harmful effect and ecology of invasive plants in Taiwan. The Harmful Effect and Field Management of Mikania micrantha. Hualien, Taiwan, Weed Science Society of the Republic of China and Hualien District Agricultural Research and Extension Station, Council of Agricultural Executive Yuan.
Chiou C-R, Wang H-H, Chen Y-J, Grant WE, Lu M-L. 2013. Modeling potential range expansion of the invasive shrub Leucaena leucocephala in the Hengchun peninsula, Taiwan. Invasive Plant Science and Management 6: 492-501.
Chou C-H, Kuo Y-L. 1986. Allelopathic research of subtropical vegetation in Taiwan III. Allelopathic exclusion of understory by Leucaena leucocephala (Lam.) de Wit. Journal of Chemical Ecology 12: 1431-1448.
Colautti RI, Maclsasc HJ. 2004. A neutral terminology to define 'invasive' species. Diversity and Distributions 10: 135-141.
Cruden RW. 1977. Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution 31: 32-46.
Cui Q-G, He W-M. 2009. Soil biota, but not soil nutrients, facilitate the invasion of Bidens pilosa relative to a native species Saussurea deltoidea. Weed research 49: 201-206.
Daehler CC. 1998. Variation in self-fertility and the reproductive advantage of self-fertility for an invading plant (Spartina alterniflora). Evolutionary Ecology 12: 553-568.
Dafni A, Maues MM. 1998. A rapid and simple procedure to determine stigma receptivity. Sexual Plant Reproduction 11: 177-180.
de Nettancourt D. 2001. Incompatibility and Incongruity in Wild and Cultivated Plants. edn. Berlin: Springer-Verlag.
Deba F, Xuan TD, Yasuda M, Tawata S. 2008. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. radiata. Food Control 19: 346-352.
Dematteis M, Fernandez A. 2000. Chromosome studies on nine South American species of Vernonia (Vernonieae, Asteraceae). Caryologia 53: 55-61.
Deng S-L, Lu F-Y, Ho K-Y, Kuo Y-W. 2005. Genetic variation of the Bidens pilosa complex (Compositae) in Taiwan. Quarterly Journal of Chinese Forestry 38: 397-408.
DeWalt SJ, Denslow JS, Hamrick JH. 2004. Biomass allocation, growth, and photosynthesis of genotypes from native and introduced ranges of the tropical shrub Clidemia hirta. Oecologia 138: 521-531.
Elton CS. 1958. The ecology of invasions by animals and plants. edn. New York: Wiely.
Erbar C, Langlotz M. 2005. Pollen to ovule ratios: standard or variation - a compilation. Botanische Jahrbucher fur Systematik 126: 71-132.
Erbar C, Leins P. 1995. Portioned pollen release and the syndromes of secondary pollen presentation in the Campanulales-Asterales-complex. Flora 190: 323-338.
Faegri K, Pijl Lvd. 1979. The Principles of Pollination Ecology. 3rd edn. New York: Pergamon Press.
Feng Y-L, Fu G-L. 2008. Nitrogen allocation, partitioning and use efficiency in three invasive plant species in comparison with their native congeners. Biological Invasions 10: 891-902.
Feng Y-L, Fu G-L, Zheng Y-L. 2008. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta 228: 383-390.
Ghersa CM, Holt JS. 1995. Using phenology prediction in weed management: a review. Weed Research 35: 461-470.
Goldberg DE. 1987. Neighborhood competition in an old-field plant community. Ecology 68: 1211-1223.
Goralski G, Judasz A, Gacek P, Grabowska-Joachimiak A, Joachimiak AJ. 2014. Polyploidy, alien species and invasiveness in Polish angiosperms. Plant systematics and Evolution 300: 225-238.
Goulson D, Rotheray EL. 2012. Population dynamics of the invasive weed Lupinus arboreus in Tasmania, and interactions with two non-native pollinators. Weed research 52: 535-541.
Grombone-Guaratini MT, Mansanares ME, Semir J, Solferini VN. 2006. Chromosomal studies of three species of Bidens (L.) (Asteraceae). Caryologia 59: 14-18.
Grombone-Guaratini MT, Solferini VN, Semir J. 2004. Reproductive biology in species of Bidens L. (Asteraceae). Scientia Agricola 61: 185-189.
Grotkopp E, Rejma’nek M, Rost TL. 2002. Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 Pine (Pinus) species. The American Naturalist 159: 396-419.
Grotkopp E, Rejmanek M. 2007. High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. American Journal of Botany 94: 526-532.
Grove RH. 1992. Weed Ecology, Biology and Spread. Proceedings of the First International Weed Control Congress. Melbourne, Australia.
Hamilton MA, Murray BR, Cadotte MW, Hose GC, Baker AC, Harris CJ, Licari D. 2005. Life-history correlates of plant invasiveness at regional and continental scales. Ecology Letters 8: 1066-1074.
Harder LD, Barrett SCH, Cole WW. 2000. The mating consequences of sexual segregation within inflorescences of flowering plants. Proceedings of the Royal Society B: Biological Sciences 267: 315-320.
Harmon-Threatt AN, Burns JH, Shemyakina LA, Knight TM. 2009. Breeding system and pollination ecology of introduced plants compared to their native relatives. American Journal of Botany 96: 1544-1550.
He Z, Bentley LP, Holaday AS. 2011. Greater seasonal carbon fain across a broad temperature range contributes to the invasive potential of Phalaris arundinacea (Poaceae; reed canary grass) over the native sedge Carex stricta (Cyperaceae). American Journal of Botany 98: 20-30.
Henery ML, Westoby M. 2001. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92: 479-490.
Hiscock SJ. 2000. Self-incompatibility in Senecio squalidus L. (Asteraceae). Annals of Botany 85: 181-190.
Ho C-Y. 2009. What make Panicum maximum Jacq. successfully invade the Dadu mountain area after fire? Master, National Taiwan University, Taipei.
Hong L, Shen H, Ye W-H, Cao H-L, Wang Z-M. 2007. Self-incompatibility in Mikania micrantha in South China. Weed Research 47: 280-283.
Hong L, Shen H, Ye W-H, Cao H-L, Wang Z-M. 2008. Secondary pollen presentation and style morphology in the invasive weed Mikania micrantha in South China. Botanical Studies 49: 253-260.
Howell GJ, Slater AT, Knox RB. 1993. Secondary pollen presentation in Angiosperms and its biological significance. Australian Journal of Botany 41: 417-438.
Hsu H-M. 2006. Implications of the invasiveness of Bidens pilosa L. var. radiata Sch. Bip. by studying its superiority over Bidens bipinnata L. Master Thesis, National Taiwan University, Taipei, Taiwan.
Hsu H-M, Kao W-Y. 2009. Contrasting effects of aqueous tissue extracts from an invasive plant, Bidens pilosa L. var. radiata, on the performance of its sympatric plant species. Taiwania 54: 255-260.
Hsu H-M, Kao W-Y. 2014. Vegetative and reproductive growth of an invasive weed Bidens pilosa L. var. radiata and its noninvasive congener Bidens bipinnata in Taiwan. Taiwania 59: 119-126.
Huang H-L. 2008. A comparison of Bidens pilosa populations at two altitudes in Taiwan. Master Thesis, National Taiwan University, Taipei, Taiwan.
Huang Y-L, Chen S-J, Kao W-Y. 2012. Floral biology of Bidens pilosa var. radiata, an invasive plant in Taiwan. Botanical Studies 53: 501-507.
Huang Y-L, Kao W-Y. 2014. Different breeding systems of three varieties of Bidens pilosa in Taiwan. Weed Research 54: 162-168.
Hwang S-Y, Kuo Y-H, Peng J-J. 2003. The spread and monitoring program for Mikania micrantha in Taiwan. The Harmful Effect and Field Management of Mikania micrantha. Hualien, Taiwan, Weed Science Society of the Republic of China and Hualien District Agricultural Research and Extension Station, Council of Agricultural Executive Yuan.
Keil DJ, Luckow MA, Pinkava DJ. 1988. Chromosome studies in Asteraceae from the United States, Mexico, the West Indies, and South America. American Journal of Botany 75: 652-668.
Kuo Y-L, Chen T-Y, Lin C-C. 2002. Using a consecutive-cutting method and allelopathy to control the invasive vine, Mikania micrantha H. B. K. Taiwan Journal of Forest Science 17: 171-181.
Ladd PG. 1994. Pollen presenters in the flowering plants - form and function. Botanical Journal of the Linnean Society 115: 165-195.
Lambers H, Poorter H. 1992. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research 23: 187-261.
Lasso E, Engelbrecht BMJ, Dalling JW. 2009. When sex is not enough: ecological correlates of resprouting capacity in congeneric tropical forest shrubs. Oecologia 161: 43-56.
Leins P, Erbar C. 1990. On the mechanisms of secondary pollen presentation in the Campanulales-Asterales complex. Botanica Acta 103: 87-92.
Leins P, Erbar C. 2006. Secondary pollen presentation syndromes of the Asterales - a phylogenetic perspective. Botanische Jahrbucher fur Systematik 127: 83-103.
Leishman MR, Haslehurst T, Ares A, Baruch Z. 2007. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytologist 176: 635-643.
Levine JM, Vila M, D'Antonio CM, Dukes JS, Grigulis K, Lavorel S. 2003. Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London Series B-Biological Sciences 270: 775-781.
Liu J, Dong M, Miao S-L, Li Z-Y, Song M-H, Wang R-Q. 2006. Invasive alien plants in China: role of clonality and geographical origin. Biological Invasions 8: 1461-1470.
Lloret F, Medail F, Brundu G, Hulme PE. 2004. Local and regional abundance of exotic plant species on Mediterranean isalnds: are species traits important? Global Ecology and Biogeography 13: 37-45.
Lloret F, MeDail F, Brundu G, Camarda I, Moragues EVA, Rita J, Lambdon P, Hulme PE. 2005. Species attributes and invasion success by alien plants on Mediterranean islands. Journal of Ecology 93: 512-520.
Lowry E, Lester SE. 2006. The biogeography of plant reproduction: potential determinants of species' range sizes. Journal of Biogeography 33: 1975-1982.
Maria FJ, Laughinghouse IV HD, Silva ACFD, Tedesco SB. 2008. Variability of the chromosomal number and meiotic behavior in populations of Bidens pilosa L. (Asteraceae) from southern Brazil. Caryologia 61: 164-169.
McDowell SCL. 2002. Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). American Journal of Botany 89: 1431-1438.
Mione T, Anderson GJ. 1992. Pollen-ovule ratios and breeding system evolution in Solanum section Basarthrum (Solanaceae). American Journal of Botany 79: 279-287.
Mooney HA, Hobbs RJ. 2000. Invasive Species in a Changing World. edn. Washington, D.C.: Island Press.
Munguia-Rosas MA, Parra-Tabla A, Montiel S. 2013. Extreme variation in the reproductive phenology of the weed Ruellia nudiflora. Weed research.
Ordonez A, Wright IJ, olff H. 2010. Functional differences between native and alien species: a global-scale comparison. Functional Ecology 24: 1353-1361.
Osunkoya OO, Bayliss D, Panetta FD, Vivian-Smith G. 2010. Leaf trait co-ordination in relation to construction cost, carbon gain and resource-use efficiency in exotic invasive and native woody vine species. Annals of Botany 106: 371-380.
Ozinga WA, Hennekens SM, Schaminee JHJ, Smits NAC, Bekker RM, Romermann C, Klimeš L, Bakker JP, van Groenendael JM. 2007. Local above-ground persistence of vascular plants: Life-history trade-offs and environmental constraints. Journal of Vegetation Science 18: 489-497.
Pattison RR, Goldstein G, Ares A. 1998. Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117: 449-459.
Peng C-I, Chung K-F, Li H-L. 1998. Compositae. In: C. HT, Taiwan ECotFo eds. Flora of Taiwan. 2 ed. Taipei, Taiwan: Department of Botany, National Taiwan University, 807-1101.
Peng C-I, Hsu C-C. 1978. Chromosome numbers in Taiwan Compositae. Botanical Bulletin of Academia Sinica 19: 53-66.
Petanidou T, Godfree RC, Song DS, Kantsa A, Dupont YL, Waser NM. 2012. Self-compatibility and plant invasiveness: Comparing species in native and invasive ranges. Perspectives in Plant Ecology, Evolution and Systematics 14: 3-12.
Pimentel D, Lach L, Zuniga R, Morrison D. 2000. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50: 53-65.
Pimentel D, Zuniga R, Morrison D. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273-288.
Price SC, Jain SK. 1981. Are inbreeders better colonizers? Oecologia 49: 283-286.
Rambuda TD, Johnson SD. 2004. Breeding systems of invasive alien plants in South Africa: does Baker's rule apply? Diversity and Distributions 10: 409-416.
Rauschert ESJ, Shea K. 2012. Invasional interference due to similar inter- and intraspecific competition between invaders may affect management. Ecological Applications 22: 1413-1420.
Rejmanek M, Richardson DM. 1996. What attributes make some plant species more invasive? Ecology 77: 1655-1661.
Richards AJ. 1997. Plant Breeding Systems. 2nd edn. London: Chapman & Hall.
Richardson DM. 2004. Plant invasion ecology-dispatches from the front line. Diversity and Distributions 10: 315-319.
Richardson DM, Allsopp N, D'antonio CM, Miloton SJ, Rejmanek M. 2000a. Plant invasions - the role of mutualisms. Biological Reviews 75: 65-93.
Richardson DM, Pysek P, Rejmanek M, Barbour MG, Pannetta FD, West CJ. 2000b. Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6: 93-107.
Rocha OJ. 1966. The effects of achene heteromorphism on the dispersal capacity of Bidens pilosa L. International Journal of Plant Sciences 157: 316-322.
Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, Neil PO, Parker IM, Thompson JN, Weller SG. 2001. The population biology of invasive species. Annual Review of Ecology and Systematics 32: 305-332.
Scharfy D, Funk A, Venterink HO, Gusewell S. 2011. Invasive forbs differ functionally from native graminoids, but are similar to native forbs. New Phytologist 189: 818-828.
Sherff EE. 1937. The genus Bidens. Field Museum of Natural History, Botanical Series 11: 412-461.
Shivanna KR. 2003. Pollen Biology and Biotechnology. edn. Enfield, NH: Science Publishers.
Shortt KB, Vamosi SM. 2012. A review of the biology of the weedy Siberian peashrub, Caragana arborescens, with an emphasis on its potential effects in North America. Botanical Studies 53: 1-8.
Smith MD, Knapp AK. 2001. Physiological and morphological traits of exotic, invasive exotic, and native plant species in tallgrass prairie. International Journal of Plant Sciences 162: 785-792.
Solbrig OT, Kyhos DW, Powell M, Raven PH. 1972. Chromosome Numbers in Compositae VIII: Heliantheae. American Journal of Botany 59: 869-878.
Sorrell BK, Brix H, Fitridge I, Konnerup D, Lambertini C. 2012. Gas exchange and growth responses to nutrient enrichment in invasive Glyceria maxima and native New Zealand Carex species. Aquatic Botany 103: 37-47.
Sun M, Ganders FR. 1990. Outcrossing rates and allozyme variation in rayed and rayless morphs of Bidens pilosa. Heredity 64: 139-143.
Sutherland S. 2004. What makes a weed a weed: life history traits of native and exotic plants in the USA. Oecologia 141: 24-39.
Tang C-Y, Huang R-N, Kuo-Huang L-L, Kuo T-C, Yang Y-Y, Lin C-Y, Jane W-N, Chen S-J. 2012. A simple cryo-holder facilitates specimen observation under a conventional scanning electron microscope. Microsccopy Research and Technique 75: 103-111.
Thompson JD. 1991. The biology of an invasive plant. BioScience 41: 393-401.
Torres C, Galetto L. 2007. Style morphological diversity of some Asteraceae species from Argentina: systematic and functional implications. Journal of Plant Research 120: 359-364.
Treier UA, Broennimann O, Normand S, Guisan A, Schaffner U, Steinger T, Muller-Scharer H. 2009. Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology 90: 1366-1377.
Tsai L-C, Liao P-C, Hsieh H-M, Lee JC-I, Wang J-C. 2007. The genetic diversity of Bidens pilosa L. in Taiwan analyzed by chloroplast noncoding and nuclear rDNA sequences. BioFormosa 42: 89-98.
Vallejo-Marin M, O'Brien HE. 2007. Correlated evolution of self-incompatibility and clonal reproduction in Solanum (Solanaceae). New Phytologist 173: 415-421.
van Kleunen M, Johnson SD. 2007. Effects of self-compatibility on the distribution range of invasive European plants in North America. Conservation Biology 21: 1537-1544.
van Kleunen M, Manning JC, Pasqualetto V, Johnson SD. 2008. Phylogenetically independent associations between autonomous self-fertilization and plant invasiveness. The American Naturalist 171: 195-201.
van Kleunen M, Weber E, Fischer M. 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13: 235-245.
Vitousek PM, D'Antonio CM, Loope LL, Rejmanek M, Westbrooks R. 1997. Introduced species: A significant component of human - caused global change. New Zealand Journal of Ecology 21: 1-16.
Wagg C, Husband BC, Green DS, Massicotte HB, Peterson RL. 2011. Soil microbial communities from an elevational cline differ in their effect on conifer seedling growth. Plant Soil 340: 491-504.
Wang H-H, Hung S-F. 2005. The effects of herbicide injection treatments on Leucaena control and techniques of forest restoration. Weed Science Bulletin 26: 15-32.
Wang J, Yang H, Lin Z-W, Sun H-D. 1997. Flavonoids from Bidens pilosa var. radiata. Phytochemistry 46: 1275-1278.
Wang Y-C, Hu J-M. 2011. Cryptic dioecy of Symplocos wikstroemiifolia Hayata (Symplocaceae) in Taiwan. Botanical Studies 52: 479-491.
Ward M, Johnson SD, Zalucki MP. 2012. Modes of reproduction in three invasive milkweeds are consistent with Baker's Rule. Biological invasions 14: 1237-1250.
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125-159.
Williamson M. 1993. Invaders, weeds and the risk from genetically manipulated organisms Experientia 49: 219-224.
Williamson MH, Brown KC. 1986. The analysis and modelling of British invasions. Philosophical Transactions of the Royal Society of London B314: 505-522.
Wodehouse RP. 1935. Pollen Grains: Their Structure, Identification, and Significance in Science and Medicine. 1st edn. New York: McGraw-Hill.
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas M-L, Niinemets Ul, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.
Wu S-H, Hsieh C-F, Chaw S-M, Rejmanek M. 2004. Plant invasions in Taiwan: insights from the flora of casual and naturalized alien species. Diversity and Distributions 10: 349-362.
Wu S-H, Yang TYA, Teng Y-C, Chang C-Y, Yang K-C, Hsieh C-F. 2010. Insights of the latest naturalized flora of Taiwan: change in the past eight years. Taiwania 55: 139-159.
Xiao Y, Tang JB, Qing H, Zhou CF, Kong WJ, An SQ. 2011. Trade-offs among growth, clonal, and sexual reproduction in an invasive plant Spartina alterniflora responding to inundation and clonal integration. Hydrobiologia 658: 353-363.
Yeo PF. 1993. Secondary pollen presentation: Form, function and evolution. Plant Systematics and Evolution Supplementum 6: 1-268.
Yu F-H, Wang N, Alpert P, He W-M, Dong M. 2009. Physiological integration in an introduced, invasive plant increases its spread into experimental communities and modifies their structure. American Journal of Botany 96: 1983-1989.
Zheng Y-L, Feng Y-L, Liu W-X, Liao Z-Y. 2009. Growth, biomass allocation, morphology, and photosynthesis of invasive Eupatorium adenophorum and its native congeners grown at four irradiances. Plant Ecology 203: 263-271.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5072-
dc.description.abstract外來物種的入侵是造成生物多樣性降低的重要原因之一。根據臺灣植物誌的記載,臺灣有三種咸豐草變種:小白花鬼針、白花鬼針與大花咸豐草。這三者之中,大花咸豐草最晚在臺灣開始有採集紀錄。然而,自從大花咸豐草被引入臺灣後,在短短三十年內,已成為臺灣中、低海拔路邊、廢耕地或荒地中最常見的野草。為了了解究竟是什麼樣的生物特徵,使大花咸豐草被引入後,在台灣的低海拔地區,比小白花鬼針與白花鬼針優勢,並成為臺灣嚴重的入侵植物,本研究比較此三種咸豐草變種的生長、繁育系統與生活史特徵。
在生物量的累積上,大花咸豐草、小白花鬼針與白花鬼針三者在夏季的相對生長速率均較秋季高,顯示高溫高光的夏季較適合此三種咸豐草變種生長。在夏季時,大花咸豐草的生長速率顯著高於另外兩變種;但在秋季時,三變種有相似的生長速率。由此推測:大花咸豐草相較於另外兩變種的生長優勢僅發生於高光高溫的環境中。此外,與另外兩變種相比,大花咸豐草具有較高的根部生物量比例、側枝的生長角度較為水平(較接近地面)、與較好的不定根生長能力,並具有二回側枝,這些特徵顯示大花咸豐草的營養繁殖潛力勝過另外兩變種。
研究三種咸豐草變種的開花生物學,發現大花咸豐草、小白花鬼針與白花鬼針三者均有次級花粉呈現與不完全雄先熟的現象,但在溫室中栽植時,只有大花咸豐草不會結瘦果,因此進行套袋實驗以了解其繁育系統。實驗結果確認大花咸豐草無法自交結瘦果,其繁育系統為自交不親和;而小白花鬼針與白花鬼針能於套袋中自交結瘦果,為自交親和。大花咸豐草有許多特徵於個體間有顯著差異,顯示大花咸豐草的高度異質性,可能是完全異交所造成的結果;而此特性也有助於大花咸豐草在不同的環境中生存、生長。
相較於另外兩變種,大花咸豐草雖然較晚開花,瘦果產量於實驗初期較低,但因小白花鬼針和白花鬼針植株在開完花後即死亡,為一年生植物,而部分大花咸豐草個體存活期間較長,並可透過無性繁殖的方式,產生大量分株,主幹在開花結果後,雖然會乾枯,但其分株可繼續生長、開花並結果,使其個體之生命週期可延長超過一年以上,並在栽植一年後,累積的瘦果產量超過另外兩變種。雖然小白花鬼針與白花鬼針所結瘦果較大花咸豐草瘦果重、發芽快,但三者最終發芽率並無顯著差異;且因大花咸豐草的瘦果較輕、較多,會比其它兩變種更有機會被動物攜帶、散播到遠方。
綜合實驗結果,我推論:大花咸豐草經由有性繁殖可以產生大量瘦果,這些瘦果因為有芒,容易吸附在動物身上,讓大花咸豐草可以擴散至四處。因為具完全異交的繁育系統,使得大花咸豐草具有高度異質性,能適應不同的環境,在許多不同棲地生存下來。而當大花咸豐草拓殖到一個新的棲地後,能透過無性繁殖,產生大量分株,使其在該地區能快速且持續地增加覆蓋面積。大花咸豐草兼具無性繁殖和完全異交的有性繁殖系統特徵,加上臺灣溫暖高光的氣候環境、土地利用的變遷,使得大花咸豐草能優於小白花鬼針與白花鬼針,成為臺灣嚴重的入侵植物之一。
zh_TW
dc.description.abstractThe invasion of exotic species has become one of the most important factors reducing biodiversity. Three varieties of Bidens pilosa: var. minor, var. pilosa and var. radiata, were listed in the Flora of Taiwan. Among the three varieties, the first record of var. radiata in Taiwan was later than those of the other two varieties. However, after being introduced into Taiwan, var. radiata has become a common weed on roadsides, uncultivated field and waste grounds from low to middle elevations in the past three decades. In order to identify what traits let var. radaita dominant over the other two varieties and become one of serious invasive plants in Taiwan lowland after its introduction, I compared the growth, breeding system and life history traits of these three varieties.
The relative growth rates of the three varieties were higher in summer than in fall. The result suggested that summer with high light and temperature was more suitable for the growth of all three varieties than fall. In summer, var. radaita grew faster and accumulated more biomass than the other two varieties. Thus, var. radaita had growth advantage over the other two varieties in regions with high light and high temperature conditions. In addition, var. radaita had higher root/biomass ratio, more horizontally oriented lateral shoots, and grew more adventitious roots than the other two varieties. Among the three varieties, only var. radiata had secondary axillary shoots. With these characters, var. radiata had a greater potential of vegetative reproduction than the other two varieties.
It was found that all three varieties had secondary pollen presentation and were incompletely protandrous. However, when these three varieties grew sympatrically in a greenhouse, var. minor and var. pilosa produced achenes while var. radiata had no achene set. Bagging experiments were conducted to explain the phenomenon. From the results of bagging treatment, I confirmed that self-incompatibility was the key mechanism preventing selfing in var. radiata, while var. minor and var. pilosa were self-compatible and were capable of producing achenes in bags by selfing. Significant differences were found in many traits among individuals of var. radiata. The result indicated that high heterogeneities in many traits of var. raidata might result from its obligate xenogamous breeding system.
Although var. radiata flowered later and set less achenes than the other two varieties, half individuals of var. radiata lived longer and formed ramets by vegetative reproduction. These ramets flowered and set achenes when matured. Consequently, var. radiata accumulated significantly more achenes than the other two varieties after being planted for one year. In addition, although achenes of var. minor and var. pilosa were heavier and germinated earlier than those of var. radiata, the final germination percentage was not different among the three varieties. Having more and lighter achenes, var. radiata would be dispersed by animals more easily than the other two varieties.
In conclusion, massive achenes produced by sexual reproduction potentially allow var. radiata dispersing into far-reaching habitats. High heterogeneities were found in many traits of var. radiata, which might allow var. radiata to have widely fundamental niche. After established in a new habitat, var. radiata could generate many ramets by vegetative reproduction, expand horizontally, eventually occupied the area and became dominant. In summary, the breeding system and life history traits of var. radiata, in combination with the warm and high light climate and land use change in Taiwan confer var. radiata advantage over var. minor and var. pilosa and become one of serious invasive plants in Taiwan.
en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:51:34Z (GMT). No. of bitstreams: 1
ntu-103-D95b44005-1.pdf: 1328185 bytes, checksum: 3e43f1c069c900e13ca9a9f2b4a41d8d (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 I
Abstract III
Contents VII
LIST OF FIGURES IX
LIST OF TABLES X
Chapter 1 General introduction 1
1-1 The definition of invasive species 2
1-2 What traits make plants invasive? 4
1-3 Studies of invasive plants in Taiwan 7
1-4 Bidens pilosa var. radiata and its congeners 9
1-5 Objectives and studies of the thesis 12
Chapter 2 A comparison of growth and morphology of the three varieties of Bidens pilosa, var. minor, var. pilosa and var. radiata, in two seasons 15
摘要 16
Abstract 17
Introduction 19
Materials and Methods 22
Results 24
Discussion 28
Figures and Tables 32
Chapter 3 Floral biology of Bidens pilosa var. radiata 41
摘要 42
Abstract 43
Introduction 44
Materials and Methods 46
Results 49
Discussion 52
Figures and Tables 56
Chapter 4 Breeding systems of the three varieties of Bidens pilosa, var. minor,
var. pilosa and var. radiata 63
摘要 64
Abstract 65
Introduction 66
Materials and Methods 68
Results 72
Discussion 74
Figures and Tables 77
Chapter 5 Life history traits of the three varieties of Bidens pilosa, var. minor,
var. pilosa and var. radiata 83
摘要 84
Abstract 85
Introduction 86
Materials and Methods 87
Results 89
Discussion 94
Figures and Tables 98
Chapter 6 Chromosomal number of populations of the three varieties of
Bidens pilosa, var. minor, var. pilosa and var. radiata 105
摘要 106
Abstract 107
Introduction 108
Materials and Methods 110
Results and Discussion 111
Figures and Tables 114
Conclusions 117
Literature Cited 121
dc.language.isozh-TW
dc.title比較咸豐草三個變種的生物特徵以了解大花咸豐草在臺灣的入侵優勢zh_TW
dc.titleComparisons of three varieties of Bidens pilosa to identify what traits make the variety radiata invasive in Taiwanen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee謝長富(Chang-Fu Hsieh),陳淑華(Su-Hwa Chen),林讚標(Tsan-Piao Lin),王震哲(Jenn-Che Wang),郭耀綸(Yau-Lun Kuo)
dc.subject.keyword繁育系統,生長,大花咸豐草,入侵植物,生活史特徵,zh_TW
dc.subject.keywordBreeding system,Growth,Hairy beggar-ticks (Bidens pilosa L. var. radiata Sch. Bip.),Invasive plants,Life history traits,en
dc.relation.page130
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf1.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved