Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50713
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘(Da-Ming Wang)
dc.contributor.authorJia-Yun Hanen
dc.contributor.author韓佳耘zh_TW
dc.date.accessioned2021-06-15T12:54:06Z-
dc.date.available2021-08-30
dc.date.copyright2016-08-30
dc.date.issued2016
dc.date.submitted2016-07-18
dc.identifier.citation1. 陳昱瑋, 以具分散反萃取相支撐式液膜分離回收釹(Nd3+)鏑(Dy3+)離子, 化學工程學系. 2013, 國立台灣大學.
2. Wickramasinghe, S.R., M.J. Semmens, and E.L. Cussler, Mass transfer in various hollow fiber geometries. Journal of Membrane Science, 1992. 69(3): p. 235-250.
3. Haque, N., Hughes, A., Lim, S. and Vernon, C., Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact. Resources, 2014. 3(4): p. 614-635.
4. Binnemans, K., Jones, P.T., Blanpain, B., Gerven, T.V., Yang, Y. and Walton, A., Recycling of rare earths: a critical review. Journal of Cleaner Production, 2013. 51(0): p. 1-22.
5. Roger G. Skirrow, D.L.H., Terrence P. Mernagh, Jane P. Thorne, Helen Dulfer and Anthony B. Senior, Critical commodities for a high-tech world: Australia's potential to supply global demand. 2013: Australia.
6. Sally Jewell, S.M.K., Mineral Commodity Summaries 2015 2015: U.S. Department of the Interior, U.S. Geological Survey.
7. Dupont, D. and K. Binnemans, Rare-earth recycling using a functionalized ionic liquid for the selective dissolution and revalorization of Y2O3:Eu3+ from lamp phosphor waste. Green Chemistry, 2015. 17(2): p. 856-868.
8. Innocenzi, V., De Michelis, I., Ferella, F., Beolchini, F., Kopacek, B. and Veglio, F., Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation. Waste Management, 2013. 33(11): p. 2364-2371.
9. Innocenzi, V., De Michelis, I. and Ferella, F. and Veqlio, F.., Recovery of yttrium from cathode ray tubes and lamps' fluorescent powders: experimental results and economic simulation.Waste Management, 2013. 33(11): p. 2390-2396.
10. Xie, F., Zhang, T.A., Dreisinger, D. and Doyle, F., A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 2014. 56: p. 10-28.
11. 谢建昌、李全安、李建弘、李克杰, 稀土钇及其应用现状. 稀有金属与硬质合金, 2008.
12. 曲建仲, 新興能源好乾淨—汽車的動力與能源, 科學月刊. 2014.
13. 王書任、林仁鈞, 發光二極體:讓LED發光的功臣–螢光粉, 《科學發展》. 2009. p. 22 - 27.
14. 王筱姍、陳韋廷、劉如熹, 發光二極體用之螢光粉熱特性探討,光連雙月刊.
2013. p. 70-74.
15. Gutfleisch, O., Willard, M., Brück, E., Chen, C.H., Sankar, S.G. and Liu, J.P., Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Advanced Materials, 2011. 23(7): p. 821-842.
16. 黄小卫、张永奇、李红卫, 我国稀土资源的开发利用现状与发展趋势,中国科 学 基 金. 2011. p. 134-137.
17. Ling, L. and N.-H.L. Wang, Ligand-assisted elution chromatography for separation of lanthanides. Journal of Chromatography A, 2015. 1389: p. 28-38.
18. Morais, C.A. and V.S.T. Ciminelli, Recovery of europium from a rare earth chloride solution. Hydrometallurgy, 1998. 49(1-2): p. 167-177.
19. Abreu, R.D. and C.A. Morais, Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide. Minerals Engineering, 2010. 23(6): p. 536-540.
20. 裴亮, 分散支撑液膜在稀土金属迁移与分离回收中的应用研究, 环境工程. 2010, 西安理工大学.
21. Kertes, A.S. and C.J. King, Extraction chemistry of fermentation product carboxylic acids. Biotechnology and Bioengineering, 1986. 28: p. 269-282.
22. Morais, C.A. and V.S.T. Ciminelli, Process development for the recovery of high-grade lanthanum by solvent extraction. Hydrometallurgy, 2004. 73(3-4): p. 237-244.
23. PEARSO, R.G., Hard and Soft Acids and Bases JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1963. Vol 85, No 22 p. 3533-3539.
24. Dybczynski, R.S., Kulisa, K., Pyszynska, M. and Bojanowska-Czajka, A., New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode. Journal of Chromatography A, 2015. 1386: p. 74-80.
25. Radhika, S., Nagaphani Kumar, B., Lakshmi Kantam, M. and Ramachandra Reddy, B., Liquid-liquid extraction and separation possibilities of heavy and light rare-earths from phosphoric acid solutions with acidic organophosphorus reagents. Separation and Purification Technology, 2010. 75(3): p. 295-302.
26. Hudson, M.J., An Introduction to some Aspects of Solvent Extraction Chemistry in Hydrometallurgy. Hydrometallurgy, 1982. 9: p. 149-68.
27. Tavlarides, L.L., J.H. Bae, and C.K. Lee, Solvent-Extraction, Membranes, and Ion-Exchange in Hydrometallurgical Dilute Metals Separation. Separation Science and Technology, 1987. 22(2-3): p. 581-617.
28. Xie, F., Zhang, T.A., Dreisinger, D. and Doyle, F., A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engineering, 2014.
56(0): p. 10-28.
29. Li, D.Q., Some chemical problems in the hydrometallurgical industries of Rare Earth. Progress in Chemistry, 1995. Volume 7: p. Pages 209-213.
30. Li, W., Wang, X., Meng, S., Li, D. and Xiong, Y.., Extraction and separation of yttrium from the rare earths with sec-octylphenoxy acetic acid in chloride media. Separation and Purification Technology, 2007. 54(2): p. 164-169.
31. Sato, T., Liquid-liquid extraction of rare-earth elements from aqueous acid solutions by acid organophosphorus compounds. Hydrometallurgy, 1989. 22(1–2): p. 121-140.
32. Ohto, K., Inoue, K., Goto, M., Nakashio, F., Nagasaki, T., Shinkai, S. and Kago, T., Solvent-Extraction of Trivalent Yttrium, Holmium, and Erbium by Novel Types of Acidic Organophosphosphonates. Bulletin of the Chemical Society of Japan, 1993. 66(9): p. 2528-2535.
33. Yoshizuka, K., Kosaka, H., Shinohara, T., Ohto, K. and Inoue, K., Structural effect of phosphoric esters having bulky substituents on the extraction of rare earth elements. Bulletin of the Chemical Society of Japan, 1996. 69(3): p. 589-596.
34. Cao, Y.Q., W. Qin, and Y.Y. Dai, Third-Phases Behavior in Extraction of Oxalic Acid with Triotylamine. Journal of Chemical Industry and Engineering, 2003. 54(5): p. 585-589.
35. Yasser T. Mohamed, A.H.I., Extraction of Copper from Waste Solution Using Liquid Emulsion Membrane. Journal of Environmental Protection, 2012. Vol. 3 No. 1: p. PP. 129-134
36. El-Hefny, N.E., Y.A. El-Nadi, and I.M. Ahmed, 18-Crown-6 for the selective extraction and separation of cerium(IV) from nitrate medium containing some lanthanides. International Journal of Mineral Processing, 2011. 101(1–4): p. 58-62.
37. Zhao, H., S.Q. Xia, and P.S. Ma, Use of ionic liquids as 'green' solvents for extractions. Journal of Chemical Technology and Biotechnology, 2005. 80: p. 1089-1095.
38. Rousseau, Y.Q., Handbook of separation Process Technology. 1987, New York: John Wiley & Sons.
39. Haan, A.B., P.V. Bartels, and J. Graauw, Extraciotn of Metal Ions from Wastewater. Modeling of the Mass Transfer in a Supported-Liquid-Membrane Process. Journal of Membrane Science, 1989. 45: p. 281-297.
40. Prasad, R. and K.K. Sirkar, Hollow Fiber Solvent-Extraction of Pharmaceutical Products-A Case Study. Journal of Membrane Science, 1989. 47: p. 235-259.
41. Danesi, P.R., Separation of Metal Species by Supported Liquid Membranes. Sep.
sci. technol., 1984. 19: 857-894, 1984-85. SEPARATION SCIENCE AND TECHNOLOGY, 1985. 19: p. 857-894.
42. Chakraborty, M., C. Bhattacharya, and S. Datta, Study of the Stability of (w/o)/w-type Emulsion During the Extraction of Nickel (II) via Emulsion Lliquid Membrane. SEPARATION SCIENCE AND TECHNOLOGY, 2004. 39: p. 1-17.
43. Vladimir, S., Liquid membranes : principles and applications in chemical separations and wastewater treatment. 2010, New York: Elsevie.
44. Wan, Y.H., X.D. Wang, and X.J. Zhang, Treatment of High Concentration Phenolic Waste Water by Liquid Membrane with N503 as Mobile Carrier. Journal of Membrane Science, 1997. 135: p. 263-270.
45. Salazar, E., Oritiz, M.I., Urtiaga, A.M. and Irabien, J.A.., Kinetic of the Separation-Concentration of Chromium(VI) with Emulsion Liquid Membrane. Ind.Eng.Chem.Res, 1992. 31: p. 1523-1529.
46. Kato, S. and J. Kawasaki, Enhancement of Hydrocarbon Permeation by Polar Additives in Liquid Emulsion Membranes. Journal of Chemical Engineering of Japan, 1987. 20: p. 585-590.
47. Neplenbroek, A.M., D. Bargeman, and C.A. Smolders, Supported Liquid Membranes: Instability Effects. Journal of Membrane Science, 1992. 67: p. 121-132.
48. Kemperman, A.J.B., Bargeman, D., Van Den Boomgaard, Th. and Strathmann, H, Stability of Supported Liquid Membranes: State of the Art. Separation Science and Technology, 1996. 31: p. 2733-2762.
49. Lyklema, J., Fundamentals of Interface and Colloid Science, Volume I : Fundamentals. 1991, London: Academic Press.
50. Adamson, A.W., Physical Chemistry of Surfaces. 1990, New York: John Wiley and Sons.
51. Deblay, P., Delepine, S., Minier, M. and Renon, H., Selection of Organic Phases for Optimal Stability and Efficiency of Flat-Sheet Supported Liquid Membranes. Separation Science and Technology, 1991. 26: p. 97-116.
52. Takahashi, K. and H. Takeuchi, Transport of Copper through a Supported Liquid Membrane. Journal of Chemical Engineering of Japan, 1985. 18: p. 205-211.
53. Zha, F.F., A.G. Fane, and C.J.D. Fell, Instability Mechanisms of Supported Liquid Membranes in Phenol transport Process. Journal of Membrane Science, 1995. 107: p. 59-74.
54. 劉芳宇, 具分散反萃取相支撐式液膜穩定性之評估. 國立台灣大學化學工程學研究所. 2008.
55. Fabiani, C., Merigiola, M., Scibona, G. and Castagnola, A.M., Degradation of Supported Liquid Membranes under an Osmotic-Pressure Gradient. Journal of
Membrane Science, 1987. 30: p. 97-104.
56. Danesi, P.R., L. Reichleyyinger, and P.G. Rickert, Lifetime of Supported Liquid Membranes – the Influence of Interfacial Properties, Chemical Composition and Water Transport on the Long-Term Stability of the Membranes. Journal of Membrane Science, 1987. 31: p. 117-145.
57. Belfer, S. and S. Binman, Immobilized Extractants – Selective Transport of Magnesium and Calcium from a Mixed Chloride Solution via a Hollow Fiber Module Journal of Applied Polymer Science, 1990. 40: p. 2073-2085.
58. Chiarizia, R., Application of Supported Liquid Membranes for Removal of Nitrate, Technetium(VII) and Chromium(VI) from Groundwater. Journal of Membrane Science, 1991. 55: p. 39-64.
59. Ritcey, G.M. and A.W. Ashbrook, Solvenr Extraction - Principles and Applications to Process Metallurgy - part 1. 1984, Amsterdam: Elsevier Science Publishers B. V.
60. Ho, W.S.W. and Y.K. Poddar, New Membrane Technology for Removal of Chromium from Waste Waters. Environmental Progress, 2001. 20: p. 44-52.
61. Venkateswaran, P. and K. Palanivelu, Recovery of phenol from aqueous solution by supported liquid membrane using vegetable oils as liquid membrane. Journal of Hazardous Materials, 2006. 131(1-3): p. 146-152.
62. Pei, L., L. Wang, and G. Yu, Separation of Eu(III) with supported dispersion liquid membrane system containing D2EHPA as carrier and HNO3 solution as stripping solution. Journal of Rare Earths, 2011. 29(1): p. 7-14.
63. Urbanski, T.S., P. Fornari, and C. Abbruzzese, The extraction of cerium(III) and lanthanum(III) from chloride solutions with LIX 54. Hydrometallurgy, 1996. 40(1-2): p. 169-179.
64. Alguacil, F.J., C. Caravaca, and M.I. Martin, Transport of chromium(VI) through a Cyanex 921-supported liquid membrane from HCl solutions. Journal of Chemical Technology and Biotechnology, 2003. 78(10): p. 1048-1053.
65. Muthuraman, G. and T.T. Teng, Use of Vegetable Oil in supported liquid membrane for the Transportof Rhodamine B. Desalination, 2009. 249: p. 1062-1066.
66. Kadous, A., M.A. Dodi, and D. Villemin, Extraction of Uranium(VI) Using D2EHPA/TOPO Based Supported Liquid Membrane. Journal of Radionalytical and Nuclear Chemistry, 2009. 280: p. 157-165.
67. Parhi, P.K. and K. Sarangi, Separation of Copper, Zinc, Cobalt and Nickel Ions by Supported Liquid Membrane Technique Using LIX 84I, TOPS-99 and Cyanex 272. Separation and Purification Technology, 2008. 59: p. 169-174.
68. Dimitrov, K., Rollet, V., Saboni, A. and Alexandrova, S., Recovery of Nickel
from Sulphate Media by Batch Pertraction in a Rotating Film Contactor Using Cyanex 302 as a Carrier. Chemical Engineering and Process: Process Intensification, 2008. 47: p. 1562-1566.
69. 黃靖軒, 以具分散反萃取相支撐式液膜分離並回收Ni2+-Zn2+-Al3+多成分金屬離子. 國立台灣大學化學工程學研究所. 台北. 2011.
70. Komasawa, I., T. Otake, and Y. Ogawa, The effect of diluent in the liquid-liquid extraction of cobalt and nickel using acidic organophosphorus compounds. Journal of Chemical Engineering of Japan, 1984. 17(4): p. 410-417.
71. Komasawa, I. and T. Otake, The Effects of Diluent in the Liquid-Liquid Extraction of Copper and Nickel Using 2-hydroxy-5-nonylbeenzophenone Oxime. Journal of Chemical Engineering of Japan, 1983. 16: p. 377.
72. Saji, J., Prasada Rao, T., Iyer, C.S.P. and Reddy, M.L.P, Extraction of iron III from acidic chloride solutions by Cyanex 923. Hydrometallurgy, 1998. 49: p. 289-296.
73. Kojima, T. and H. Fukutomi, Extraction Equilibria of Hydrochloric Acid by Trioctylamine in Low-Polar Organic Solvents. Bull. Them. Sot. Jpn., 1987. 60: p. 1309-1320.
74. Akiba, K. and H. Freiser, The Role of the Solvent in Equilibrium and Kinetic Aspects of Metal Chelate Extractions. Analytical Chemica Acta, 1982. 136: p. 329-337.
75. Sharma, J.N., Ruhela, R., Harindaran, K.N., Mishra, S.L., Tangri, S.L and Suri, A.K.., Separation Studies of Uranium and Thorium Using Tetra(2-ethylhexyl) Diglycolamide (TEHDGA) as an Extractant. J. Radioanal. Nucl. Chem., 2008. 278: p. 173-177.
76. Sasaki, Y., Sugo, Y., Suzuki, S. and Kimura, T., A Method for the Determination of Extraction Capacity and its application to N,N,N,N-tetraalkylderivatives of Diglycolamide - monoamide/n-dodecane Media. Analytical Chemica Acta, 2005. 543: p. 31-37.
77. Sato, T., H. Watanabe, and H. Nakamura, Extraction of Latic, Tartaric, Succinic, and Citric Acids by Triotylamine. Buneki Kagaku, 1985. 34: p. 559-563.
78. Vernekar, P.V., Jagdale, Y.D., Patwardhan, A.W, Patwardhan, A.V., Ansari, S.A., Mohapatra, P.K. and Manchanda, V.K., Transport of cobalt(II) through a hollow fiber supported liquid containing di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the carrier. Chemical Engineering Research & Design, 2013. 91(1): p. 141-157.
79. Bringas, E., San Roman, M.F., Irabien, J.A. and Oritiz, I., An overview of the mathematical modelling of liquid membrane separation processes in hollow fibre contactors. Journal of Chemical Technology and Biotechnology, 2009.
84(11): p. 1583-1614.
80. Danesi, P.R., Separation of Metal Species by Supported Liquid Membranes. Separation Science and Technology, 1984. 19(11-1): p. 857-894.
81. Vernekar, P.V., Jagdale, Y.D., Patwardhan, A.W., Patwardhan, A.V., Ansari, S.A., Mohapatra, P.K. and Manchanda, V.K., Transport of cobalt(II) through a hollow fiber supported liquid membrane containing di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the carrier. Chemical Engineering Research and Design, 2013. 91(1): p. 141-157.
82. Prasad, R. and K.K. Sirkar, DISPERSION-FREE SOLVENT-EXTRACTION WITH MICROPOROUS HOLLOW-FIBER MODULES. Aiche Journal, 1988. 34(2): p. 177-188.
83. Wannachod, T., Leepipatpiboon, N., Pancharoen, U. and Phatansari, S., Mass transfer and selective separation of neodymium ions via a hollow fiber supported liquid membrane using PC88A as extractant. Journal of Industrial and Engineering Chemistry, 2015. 21: p. 535-541.
84. Kubota, F., M. Goto, and F. Nakashio, EXTRACTION OF RARE-EARTH-METALS WITH 2-ETHYLHEXYL PHOSPHONIC ACID MONO-2-ETHYLHEXYL ESTER IN THE PRESENCE OF DIETHYLENETRIAMINEPENTAACETIC ACID IN AQUEOUS-PHASE. Solvent Extraction and Ion Exchange, 1993. 11(3): p. 437-453.
85. Ohto, K., Yoshida, S., Yoshizuka, K., Inoue, K., Ohtsuka, M., Goto, M. and Nakashio, F., Sovlent-Extraction Equilibria of Rare-Earth-Metals by Acidic Organophosphorus Extractants with Bulky Substituents. Analytical Sciences, 1995. 11(4): p. 637-641.
86. Fu, N.X. and M. Tanaka, Modeling of the equilibria of yttrium(III) and europium(III) solvent extraction from nitric acid with PC-88A. Materials Transactions, 2006. 47(1): p. 136-142.
87. Danesi, P.R. and G.F. Vandegrift, ACTIVITY-COEFFICIENTS OF BIS(2-ETHYLHEXYL) PHOSPHORIC-ACID IN N-DODECANE. Inorganic & Nuclear Chemistry Letters, 1981. 17(3-4): p. 109-115.
88. Fu, N.-x., Z.-t. Sui, and M. Tanaka, Equilibrium analysis of solvent extraction of yttrium (III) and europium (III) from hydrochloric acid with P-507. Transactions of Nonferrous Metals Society of China, 2011. 21(9): p. 2093-2098.
89. Choppin, G.R. and W.F. Strazik, Complexes of Trivalent Lanthanide and Actinide Ions .I. Outer-Sphere Ion Pairs. Inorganic Chemistry, 1965. 4(9): p. 1250-&.
90. Peppard, D.F. and J.R. Ferraro, An Infra-Red Study of the Systems Tri-N-Butyl Phosphate-HNO3 and Bis-(2-Ethylhexyl)-Phosphoric Acid-HNO3. Journal of
Inorganic & Nuclear Chemistry, 1960. 15(3-4): p. 365-370.
91. Hirashima, Y., Yamamoto, Y., Takagi, S., Amano, T. and Shiokawa, J., Extraction of Lanthanoids from Hydrochloric and Nitric-Acid Solutions by Di(2-Ethylhexyl)phosphoric Acid. Bulletin of the Chemical Society of Japan, 1978. 51(10): p. 2890-2893.
92. Muthuraman, G., K. Palanivelu, and T.T. Teng, Transport of cationic dye by supported liquid membrane using D2EHPA as the carrier. Coloration Technology, 2010. 126(2): p. 97-102.
93. Venkateswaran, P. and K. Palanivel, Studies on recovery of hexavalent chromium from plating wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier. Hydrometallurgy, 2005. 78: p. 107-115.
94. Joshi, J.M., Pathak, P.N., Pandey, A.K. and Manchanda, V.K., Study on synergistic carriers facilitated transport of uranium(VI) and europium(III) across supported liquid membrane from phosphoric acid media. Hydrometallurgy, 2009. 96(1–2): p. 117-122.
95. Sun, X. and K.E. Waters, Synergistic Effect between Bifunctional Ionic Liquids and a Molecular Extractant for Lanthanide Separation. Acs Sustainable Chemistry & Engineering, 2014. 2(12): p. 2758-2764.
96. Sun, X. and K.E. Waters, The Adjustable Synergistic Effects Between Acid-Base Coupling Bifunctional Ionic Liquid Extractants for Rare Earth Separation. Aiche Journal, 2014. 60(11): p. 3859-3868.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50713-
dc.description.abstract稀土金屬具有特殊的的磁性、發光特性及電化學性質等,不僅能提升產品的效能,更能達成減重、減碳、節能等環保目的,廣泛應用於磁鐵、螢光粉與觸媒等產品中。然而稀土最大宗出產國中國自2009年限制出口配額而造成高純度的稀土金屬供給危機,近年來稀土金屬已成為各國傾力回收的戰略資源,因此如何在國內建立有效的稀土金屬分離回收技術為一重要課題。本研究使用具分散反萃取相支撐式液膜的技術,建立傳輸模型預測雙成分系統中銪、釔離子以酸性萃取劑二(2-乙基己基)磷酸(D2EHPA)萃取透過液膜的效率,並以高濃度硝酸作反萃取劑對其做分離與回收。
首先對萃取機制作探討,利用搖瓶式萃取實驗建立銪、釔金屬離子在系統中的萃取平衡式與平衡常數;第二部分利用在液膜中影響透過係數的參數- 進料相pH值、進料相流速、萃取劑濃度,調控實驗條件並以最小方插法與斜率分析法得到在進料相傳輸阻力與膜相傳輸阻力大小,結合第一部分所找到的反應平衡常數建立傳輸模型。最後利用傳輸模型設計銪、釔離子的分離實驗,在第一步驟中將進料相混和溶液中的釔離子單獨地透過液膜,透過係數為9.55×10-6 m/min,兩小時內回收率達99.7%,濃縮效果從270 mg/L至1346 mg/L。在第二步驟,調整實驗參數可將進料相中剩餘的銪離子於90分鐘內透過液膜,透過係數達4.58×10-4 m/min,回收率達99.2%,濃縮效果從28.9 mg/L濃縮至143 mg/L。經由此二階段的程序,可成功將銪釔兩離子加以分離並且得到五倍濃縮液,由結果可知此傳輸模型對單成分與雙成分系統提供了高準確度的預測,並突破以往萃取劑過量的假設,在考量萃取劑改變量的同時能夠預測高濃度稀土金屬離子溶液的透過係數,達成高處理量、高選擇性、高效率且高穩定性等目的,為日後製程放大的依據。
zh_TW
dc.description.abstractRare-earth metals have a wide range of applications like phosphors, permanent magnets, catalysts, and other advanced industrial devices due to their excellent performances even in trace amount. With the increasing demand for high purity of rare-earth metals and with the supply risk caused by China, the separation and recovery of a single rare-earth metal from minerals and industrial waste have gained much attention. The present work reports on the technique of supported liquid membranes with strip dispersion (SLMSD) to separate and recover two critical rare-earth metal ions, europium (III) and yttrium (III), with organic extractant di-(2-ethylhexyl)phosphoric acid (D2EHPA) in nitrate medium. First, the dominant reactions for single rare-earth metal ion in the solvent extraction were investigated by shaking-flask experiments to obtain accurate equilibrium constants. With the equilibrium constants, transport models describing the transport and reaction of single ion in SLMSD were developed with the factors, including extractant concentration, pH value in feed, and velocity of feed. The data calculated by the transport models show high consistence with the ones obtained from mixture experiments. Based on the results, the transport models provide good predictions for separation and recovery of rare-earth metal ions, which enables operators to choose the optimal experimental parameters more efficiently with certain high selectivity through SLMSD.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:54:06Z (GMT). No. of bitstreams: 1
ntu-105-R02524037-1.pdf: 4328886 bytes, checksum: e18506ed0af30916bc5e33c936c1caa0 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents第一章 緒論 ............................................................................................................... 1
第二章 文獻回顧 ....................................................................................................... 7
2-1 稀土金屬的回收與分離................................................................................... 7
2-1-1稀土金屬的重要性與應用.................................................................... 7
2-1-2 稀土金屬的回收..................................................................................11
2-1-3稀土金屬的分離.................................................................................. 15
2-1-3-1沉澱分離法與化學分離法....................................................... 15
2-1-3-2 離子交換法.............................................................................. 16
2-1-3-3 液液萃取.................................................................................. 18
2-2液膜分離技術.................................................................................................. 33
2-2-1液膜的輸送機制與原理...................................................................... 35
2-2-1-1簡單擴散傳送........................................................................... 35
2-2-1-2載體輔助傳送........................................................................... 36
2-2-1-3偶聯輔助傳送........................................................................... 37
2-2-2液膜的型式.......................................................................................... 39
2-2-2-1乳化式液膜............................................................................... 39
2-2-2-2支撐式液膜............................................................................... 42
2-2-3支撐式液膜的不穩定性與改善.......................................................... 46
2-2-3-1 膜相的流失.............................................................................. 46
2-2-3-2 水傳遞現象.............................................................................. 47
2-2-3-3 第三相的生成.......................................................................... 48
2-2-4影響支撐式液膜效率的參數.............................................................. 50
2-2-4-1水相進料溶液........................................................................... 50
2-2-4-2有機膜相溶液........................................................................... 51
2-2-4-3支撐體結構............................................................................... 53
2-2-4-4溫度........................................................................................... 53
2-2-5支撐式液膜傳輸模型的建立.............................................................. 54
第三章 實驗理論與設計 ......................................................................................... 60
3-1萃取平衡.......................................................................................................... 60
3-2 具分散反萃取相支撐式液膜傳輸模型的建立............................................. 63
第四章 實驗方法 ..................................................................................................... 71
4-1設備與儀器...................................................................................................... 71
4-2實驗藥品.......................................................................................................... 73
4-3實驗步驟.......................................................................................................... 74
4-3-1批次搖瓶式實驗.................................................................................. 74
4-3-2具分散反萃取相支撐式液膜.............................................................. 75
4-3-3樣品濃度量測...................................................................................... 77
第五章 結果與討論 ................................................................................................. 79
5-1 銪、釔離子的萃取反應機制......................................................................... 80
5-1-1萃取反應平衡係數.............................................................................. 80
5-1-1-1銪離子系統............................................................................... 80
5-1-1-2 釔離子系統.............................................................................. 84
5-1-2萃取反應平衡常數.............................................................................. 88
5-1-2-1 銪離子系統.............................................................................. 88
5-1-2-2 釔離子系統.............................................................................. 90
5-1-3副反應.................................................................................................. 94
5-1-3-1 銪離子系統.............................................................................. 98
5-1-3-2 釔離子系統............................................................................ 104
5-2具分散反萃取相支撐式液膜參數對透過係數影響.....................................111
5-2-1進料相氫離子濃度.............................................................................111
5-2-1-1 銪離子系統.............................................................................112
5-2-1-2 釔離子系統.............................................................................116
5-2-2萃取劑濃度........................................................................................ 120
5-2-2-1 銪離子系統............................................................................ 121
5-2-2-2 釔離子系統............................................................................ 125
5-2-3進料相體積流量................................................................................ 130
5-2-3-1 銪離子系統............................................................................ 131
5-2-3-2 釔離子系統............................................................................ 135
5-3銪、釔離子透過係數的傳輸模型建立........................................................ 139
5-3-1動力學參數的計算............................................................................ 139
5-3-1-1 水相阻力參數........................................................................ 140
5-3-1-2 膜相阻力參數........................................................................ 142
5-3-2 單成份稀土金屬離子的預測........................................................... 154
5-3-2-1 不考慮萃取劑的改變量........................................................ 154
5-3-2-2 考慮萃取劑的改變量............................................................ 160
5-3-3 雙成份稀土金屬離子的預測與分離結果....................................... 164
第六章 結論 ........................................................................................................... 173
參考文獻 175
dc.language.isozh-TW
dc.title以具分散反萃取相支撐式液膜分離回收稀土金屬離子zh_TW
dc.titleSeparation and Recovery of Rare-earth Metal Ions by Supported Liquid Membrane with Strip Dispersionen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝子陽,謝學真,李清華
dc.subject.keyword支撐式液膜,銪,釔,二(2-乙基己基)磷酸,萃取機制,傳輸模型,zh_TW
dc.subject.keywordsupported liquid membrane with strip dispersion,europium,yttrium,di-(2-ethylhexyl) phosphoric acid,extraction mechanism,transport model,en
dc.relation.page182
dc.identifier.doi10.6342/NTU201600860
dc.rights.note有償授權
dc.date.accepted2016-07-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
4.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved