Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50696
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張茂山
dc.contributor.authorJin-Yu Leeen
dc.contributor.author李晉毓zh_TW
dc.date.accessioned2021-06-15T12:53:10Z-
dc.date.available2020-07-26
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-18
dc.identifier.citationArimura N, Kaibuchi K (2007) Neuronal polarity: from extracellular signals to intracellular mechanisms. Nat Rev Neurosci 8:194-205.
Bernards A, Settleman J (2004) GAP control: regulating the regulators of small GTPases. Trends Cell Biol 14:377-385.
Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167-179.
Cerione RA, Zheng Y (1996) The Dbl family of oncogenes. Curr Opin Cell Biol 8:216-222.
Chang HY, Fan CC, Chu PC, Hong BE, Lee HJ, Chang MS (2011) hPuf-A/KIAA0020 modulates PARP-1 cleavage upon genotoxic stress. Cancer Res 71:1126-1134.
Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269-309.
Chu PC, Yang YC, Lu YT, Chen HT, Yu LC, Chang MS (2006) Silencing of p29 affects DNA damage responses with UV irradiation. Cancer Res 66:8484-8491.
Conde C, Arias C, Robin M, Li A, Saito M, Chuang JZ, Nairn AC, Sung CH, Caceres A (2010) Evidence for the involvement of Lfc and Tctex-1 in axon formation. J Neurosci 30:6793-6800.
da Silva JS, Dotti CG (2002) Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 3:694-704.
Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W, Dotti CG (2003) RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J Cell Biol 162:1267-1279.
Del Re DP, Miyamoto S, Brown JH (2007) RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. J Biol Chem 282:8069-8078.
Garvalov BK, Flynn KC, Neukirchen D, Meyn L, Teusch N, Wu X, Brakebusch C, Bamburg JR, Bradke F (2007) Cdc42 regulates cofilin during the establishment of neuronal polarity. J Neurosci 27:13117-13129.
Govek EE, Newey SE, Van Aelst L (2005) The role of the Rho GTPases in neuronal development. Genes Dev 19:1-49.
Hirano Y, Hatano T, Takahashi A, Toriyama M, Inagaki N, Hakoshima T (2011) Structural basis of cargo recognition by the myosin-X MyTH4-FERM domain. EMBO J 30:2734-2747.
Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B (2004) PhosphoSite: A bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4:1551-1561.
Hu H, Li M, Labrador JP, McEwen J, Lai EC, Goodman CS, Bashaw GJ (2005) Cross GTPase-activating protein (CrossGAP)/Vilse links the Roundabout receptor to Rac to regulate midline repulsion. Proc Natl Acad Sci U S A 102:4613-4618.
Kozlov AP, Druzin MY, Kurzina NP, Malinina EP (2001) The role of D1-dependent dopaminergic mechanisms of the frontal cortex in delayed responding in rats. Neurosci Behav Physiol 31:405-411.
Lamprecht R, LeDoux J (2004) Structural plasticity and memory. Nat Rev Neurosci 5:45-54.
Lim J, Ritt DA, Zhou M, Morrison DK (2014) The CNK2 scaffold interacts with vilse and modulates Rac cycling during spine morphogenesis in hippocampal neurons. Curr Biol 24:786-792.
Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133-140.
Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167-180.
Schwamborn JC, Puschel AW (2004) The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci 7:923-929.
Sfakianos MK, Eisman A, Gourley SL, Bradley WD, Scheetz AJ, Settleman J, Taylor JR, Greer CA, Williamson A, Koleske AJ (2007) Inhibition of Rho via Arg and p190RhoGAP in the postnatal mouse hippocampus regulates dendritic spine maturation, synapse and dendrite stability, and behavior. J Neurosci 27:10982-10992.
Stankiewicz TR, Linseman DA (2014) Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 8:314.
Tahirovic S, Hellal F, Neukirchen D, Hindges R, Garvalov BK, Flynn KC, Stradal TE, Chrostek-Grashoff A, Brakebusch C, Bradke F (2010) Rac1 regulates neuronal polarization through the WAVE complex. J Neurosci 30:6930-6943.
Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99:67-86.
Vetter IR, Wittinghofer A (2001) The guanine nucleotide-binding switch in three dimensions. Science 294:1299-1304.
Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848-858.
Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM (2004) A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431:325-329.
Witte H, Bradke F (2008) The role of the cytoskeleton during neuronal polarization. Curr Opin Neurobiol 18:479-487.
Woo S, Gomez TM (2006) Rac1 and RhoA promote neurite outgrowth through formation and stabilization of growth cone point contacts. J Neurosci 26:1418-1428.
Wu L, Pan L, Wei Z, Zhang M (2011) Structure of MyTH4-FERM domains in myosin VIIa tail bound to cargo. Science 331:757-760.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50696-
dc.description.abstractRho GTPases 在細胞運動、胞內運輸、神經細胞分化與移動等生理功能均扮演重要角色, 當與GTP結合時,RhoGTPase具有酵素活性,可以催化下游反應;反之,GTP被水解成GDP時,RhoGTPase不具有酵素活性,無法啟動下游反應。這種GTP/GDP結合態的循環,分別受到 GTPase activating proteins (GAPs) 和 guanine nucleotide exchange factors (GEFs)的調控。
Vilse/CrGAP/Arhgap39 具有保守程度極高的 RhoGAP區域,還含有可與其他蛋白質作用的 WW和MyTH4區域,先前在果蠅的研究發現 Vilse利用WW區域與 Robo 受體作用,調控 Rac/cdc42相關的細胞骨架重整,進而影響軸突導向的 midline repulsion。此外,小鼠與大鼠NG108融合細胞中,Vilse同樣利用WW區域與connector enhancer of KSR-2 (CNK2) 作用,調控 Rac 活性,進而影響海馬迴神經元的生成。
為了研究Vilse在神經發生所扮演的角色,我們構築去除Vilse不同區域的表現載體以及Y448/S604點突變的表現載體,分別送進神經母細胞瘤 Neuro2a細胞中,在低血清和 retinoic acid誘導分化狀況下,發現除了去除MyTH4區域和Y448F不被磷酸化的Vilse不會影響N2a細胞的分化以外,其餘的Vilse表現載體皆可抑制N2a細胞的分化;為了瞭解Vilse是否參與胚胎神經發育過程,我們建立Vilse基因剔除鼠,結果發現缺乏Vilse表現的小鼠都死於胚胎時期,顯示全身性剔除Vilse表現會造成胚胎死亡 N2a細胞中Vilse表現量下降亦會造成細胞凋亡,證明Vilse對細胞存活有重要影響。我們進一步利用Camk2a-Cre轉殖小鼠產生Vils基因在前腦和海馬迴組織特異性剔除小鼠,其中,利用HA-iCre剔除體外培養海馬迴神經細胞Vilse-LoxP基因後發現神經細胞的樹突有發育不良之情形 而Vilse基因在海馬迴組織特異性剔除小鼠進行Y-maze實驗後發現其空間記憶能力下降,Morris water maze也發現Vilse cKO小鼠空間記憶能力與學習都較差,顯示Vilse剔除確實會造成空間記憶能力缺失。我們測量Vilse cKO小鼠海馬迴電生理反應並記錄海馬迴在受刺激後產生的long-term potentiation (LTP)現象,結果顯示Vilse剔除造成海馬迴LTP現象明顯下降,證明Vilse剔除影響海馬迴神經傳導與神經可塑性。利用Golgi stain觀察Vilse cKO小鼠海馬迴神經細胞的樹突外觀,結果顯示Vilse剔除造成神經細胞樹突較短、複雜度較低和大量未成熟的樹突小棘 (dendritic spine)。綜合以上結果可以證明Vilse在神經與胚胎發育上扮演相當重要的角色。
zh_TW
dc.description.abstractVilse/CrGAP/Arhgap39 is a newly identified GAP that contains a conserved RhoGAP domain accompanied with two protein-protein interaction domain, namely WW domain and MyTH4 domain. Previous studies show that Vilse interacts with Robo receptor through WW domain and acts downstream of Robo receptor to regulate Rac/cdc42-dependent cytoskeletal changes. Additionally, Vilse associates with connector enhancer of KSR-2 (CNK2) through WW domain to modulate Rac cycling during spine morphogenesis in hippocampal neurons.
We constructed MyTH4, WW and RhoGAP-deleted mutants of Vilse and introduced these mutants to neuroblastoma N2a cells. The presence of Vilse impaired neurite growth in N2a cells. MyTH4-deleted mutant accumulated in the nucleus, but not the plasma membrane, and the neurite outgrowth of N2a cells was not hindered. In addition, Vilse Y448 phosphorylation is also important to localization of Vilse. Y448 mutate Vilse accumulated in cytosol and failed to impair neurite growth in N2a cells.
To decipher Vilse’s function in vivo, homozygous knockout of Vilse mice has been generated and macroscopic examinations reveal an essential role of Vilse for embryonic survival. Vilse knockdown in N2a cells also result in apoptosis. Ablating Vilse-LoxP alleles using HA-Cre in hippocampal neurons in vitro supported the notion that Vilse is indispensable for neurite development. Further studies on the consequences of condition knockout Vilse (cKO) using Camk2a-Cre were performed. Interestingly, Morris water maze analysis showed that Vilse cKO mice displayed a longer latency to find the platform than wild type mice after repeated training. Y-maze test showed robust result support Vilse cKO interfered spatial memory. Furthermore, electrophysiological studies showed that the EPSPs in the hippocampus of Vilse cKO mice decreased quickly to a normal level compared with control mice, which remained in a high amplitude at 60 min post stimulation. Finally, Golgi stain results revealed smaller cell bodies, shorter dendrite lengths, less complexity and more immature spin in Vilse cKO mice. Collectively, Vilse is essential for embryonic development and required for the acquisition of spatial memory.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:53:10Z (GMT). No. of bitstreams: 1
ntu-105-R03b46002-1.pdf: 2207392 bytes, checksum: fc20ed05a0b464d6c38d340fdb0e5c16 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents目 錄
中文摘要…………………………………………………………………………………………………………………….I
英文摘要………………………………………………………………………………………….……………..….……. III
目錄………………………………………………………………………………………………………………….………..1
第一章 前言
1.1 Rho small GTPase………………………………………………………………………..………….4
1.2 Rho small GTPase與神經發育……………………………………………………..………..5
1.3 RhoGAP蛋白…………………………………………………………………..…………….……….6
1.4 Vilse/ ArhGAP39……………………………………………………………………….…………….7
1.5 研究目的………………………………………………………………………………………………….7
第二章 實驗材料與方法
2.1 細胞培養……………………………………………………………………………………..………….9
2.2 Small hairpin RNA……………………………………………………………………..………………9
2.3質體點突變…………………………………………………………………………………….……….9
2.4細胞液萃取與免疫沉澱…………………………………………………………………..…… 10
2.5西方墨點法………………………………………………………………………………………….…10
2.6 免疫螢光染色………………………………………………………………………………….……11
2.7 基因轉染……………………………………………………………………………………………….11
2.8轉基因鼠製做………………………………………………………………………………….…….11
2.9轉基因鼠Genotyping………………………………………………………………………..……12
2.10 TUNEL Staining……………………………………………………………………………………12
2.11 Morris water maze…………………………………………………………………………………13
2.12 Y-maze test……………………………………………………………………………….………….13
2.13 神經電生理測量(Electrophysiology) …………………………………………...…..13
2.14 Golgi-Cox impregnation and morphometric analyses…………………….….…14
第三章 實驗結果
3.1 Vilse具有抑制RhoA的功能……………………………………………………..…..……16
3.2 Vilse影響分化中的N2A 的neurite生成……………………………………….……16
3.3 Vilse Y448磷酸化影響Vilse在細胞中的位置與生理功能…………….…..17
3.4 Vilse基因剔除造成小鼠胚胎期死亡……………………………………………….…..18
3.5 Vilse影響細胞的生存………………………………………………………………….…...….18
3.6 製作Vilse conditional knockout mice……………………………………………..…….19
3.7 小鼠神經剔除Vilse造成神經發育異常……………………………………..….……20
3.8 Vilse在海馬迴中剔除將影響小鼠空間記憶能力…………………………………21
3.9 海馬迴Vilse剔除造成海馬迴神經long-term potentiation降低………….21
3.10 Vilse剔除造成小鼠海馬迴組織神經發育異常……………………………………22
第四章 總結與討論…………………………………………………………………………………….……………23
第五章 實驗結果圖表
圖一 Vilse具有抑制RhoA的功能……………………………………………………………25
圖二 Vilse影響分化中的N2A 的neurite生成…………………………..……………27
圖三 Vilse Y448磷酸化影響Vilse在細胞中的位置與生理功能………..……28
圖四 Vilse基因剔除造成小鼠胚胎期死亡…………………………………………………29
圖五 Vilse表現量下降影響細胞的生存…………………………………………………….30
圖六 Vilse表現模式與conditional knockout小鼠的建立…………………….…..32
圖七 小鼠神經剔除Vilse造成海馬迴神經發育異常………..………………………34
圖八 Vilse在海馬迴中剔除將影響小鼠空間記憶能力……………………………..35
圖九 海馬迴Vilse剔除造成海馬迴神經long-term potentiation降低………..36
圖十 Vilse剔除造成小鼠海馬迴組織神經發育異常……………………………….…37
附錄…………………………………………………………………………………………………….…..…..39
參考文獻………………………………………………………………………………………………..……42
dc.language.isozh-TW
dc.titleVilse在細胞存活與神經發育中功能之研究zh_TW
dc.titleIndispensable roles of Vilse in cell viability, synaptic structure and functionen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李立仁,周韻家,張震東
dc.subject.keywordVilse,ArhGAP39,MyTH4,神經發育,特定組織基因剔除,zh_TW
dc.subject.keywordVilse,ArhGAP39,MyTH4,neurogenesis,conditional knockout,en
dc.relation.page44
dc.identifier.doi10.6342/NTU201600999
dc.rights.note有償授權
dc.date.accepted2016-07-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
2.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved