Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50692
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭斯彥(Sy-Yen Kuo)
dc.contributor.authorYanlin Chenen
dc.contributor.author陳彥霖zh_TW
dc.date.accessioned2021-06-15T12:52:57Z-
dc.date.available2016-07-26
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-19
dc.identifier.citation[1] Divesh Aggarwal,Daniel Dadush,and Noah Stephens-Davidowitz.Solving the closest vector problem in $2^n$ time-the discrete gaussian strikes again! CoRR, abs/1504.01995, 2015.
[2] W.Banaszczyk.New bounds in some transference theorems in th egeometry of numbers.296(4):625{635,1993.
[3] D.Dadush,O.Regev,and N.Stephens-Davidowitz. On the Closest Vector Problem with a Distance Guarantee. ArXive-prints, September2014.
[4] Lov K.Grover. A Fast quantum mechanical algorithm for database search.1996.
[5] Wassily Hoefflding. Probability inequalities for sums of bounded random variables.
Journal ofthe American Statistical Association.
[6] Paul Kirchner and Pierre-Alain Fouque.Time-memory trade-off for lattice enumeration in a ball. Cryptologye Print Archive,Report2016/222,2016.
[7] A.K.Lenstra,H.W.jun.Lenstra,and L aszloLov asz. Factoring polynomials with rational coefficients. Math. Ann.
[8] Daniele Micciancio and Chris Peikert. Trapdoors for lattices:Simpler,tighter, faster, smaller. Cryptologye Print Archive, Report2011/501,2011.
[9] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian measures. SIAM J.Comput.
[10] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. In
Proceedings of the Forty-second ACM Symposiumon Theory of Computing, STOC'10, pages351
[11] P.Q.NguyenandT.Vidick.Sieve algorithms for the shortest vector problem are practical. J.of Mathematical Cryptology,2(2),2008.
[12] Oded Regev.New lattice-based cryptographic constructions. J. ACM, November2004.
[13] Oded Regev. On lattices,learning with errors, random linear codes, and cryptography.In Proceedings of the Thirty-seventh Annual ACM Symposiumon Theory of Computing, STOC'05,pages84.
[14] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50692-
dc.description.abstract最短晶格問題 最短晶格問題 (SVP)一直是晶格密碼學上重要的問題之;不論在古典 還是量子上,他都有著指數時間難解的保證。迄今最好的古典提供了一個O(2^n)的解,而這篇論文我們提出了一個O(3^{n/2})的量子演算法的去解決最短晶格問題。
我們主要貢獻首先是優化最短晶格與平滑參數(smoothing parameter) 之間的不等式,接著利用Grover亂序查找的量子演算法,讓我們可以在 讓我們可以在 O(3^{n/2})內,以極高的成功率找到晶格最短向量。
迄今,即使在量子計算上破解最短晶格問題仍然需要O(2^{1.79n}),我們提供了幾乎開根號的結果去解決這一個難題。
zh_TW
dc.description.abstractSVP is a well known NP hard problem both for classical and quantum. The best algorithm for SVP takes O(2^n) in classical and quantum computing does not helps. In this paper we demonstrate a quantum algorithm which solves SVP in time O(3^{n/2}) and in space O(2^{n/2}).
Our main contribution includes two parts: we first tighten the inequality of smoothing parameter and λ1 such that we have a better oracle for bounded decoding distance(BDD) problem. Then we apply Grover search on the Enumeration algorithm by Paul to solve SVP in time O(3^{n/2}).
To date, the best quantum algorithm for SVP still costs O(2^{1.79n}) in time, we provide an almost square better result for it.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:52:57Z (GMT). No. of bitstreams: 1
ntu-105-R03921034-1.pdf: 707325 bytes, checksum: 9e9f04b5129a92035d6427c2b46f5583 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsAcknowledgment ii
Abstract(Chinese) iii
Abstract iv
Chpater 1 Introduction 1
1.1 Our Contribution 2
Chpater 2 Preliminaries 5
2.1 Lattice 5
2.2 The discrete Gaussian and the smoothing parameter 5
2.3 Behavior of √ln(1ε)/ηε(L∗) 8
2.4 Tail bounds 9
2.5 δ-net and the spectral norm 10
Chpater 3 Enumeration Algorithm and BDD oracle 12
3.1 Enumeration Algorithm 12
3.2 Solver to Bounded Decoding Distance 14
Chapter 4 Improvement on Enumeration in quantum 20
4.1 Bound for ∇fW(t)/fW(t) 21
4.2 Bound for ∇fW(t) and fW(t) 23
4.3 Concluding the Approximation Procedure 25
Chpater 5 Conclusion 29
Reference 29
dc.language.isoen
dc.title量子演算法在最短晶格問題上的改良解zh_TW
dc.titleA more efficient quantum algorithm for solving the shortest vector problemen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏嗣鈞(Hsu-Chun Yen),雷欽隆(Chin-Laung Lei),陳英一(Ing-Yi Chen),陳俊良(Jiann-Liang Chen)
dc.subject.keyword晶格,密碼學,破密,量子演算法,zh_TW
dc.subject.keywordlattice,cryptography,decryption,quantum,computing,en
dc.relation.page30
dc.identifier.doi10.6342/NTU201600976
dc.rights.note有償授權
dc.date.accepted2016-07-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
690.75 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved