請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50691
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳克強(Keqiang Wu) | |
dc.contributor.author | Shen-Chi Wang | en |
dc.contributor.author | 王燊琪 | zh_TW |
dc.date.accessioned | 2021-06-15T12:52:54Z | - |
dc.date.available | 2021-08-02 | |
dc.date.copyright | 2016-08-02 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-19 | |
dc.identifier.citation | Alinsug, M.V., Yu, C.W., and Wu, K. (2009). Phylogenetic analysis, subcellular localization, and expression patterns of RPD3/HDA1 family histone deacetylases in plants. BMC Plant Biology 9, 37.
Alonso-Blanco, C., Bentsink, L., Hanhart, C.J., Blankestijn-de Vries, H., and Koornneef, M. (2003). Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164, 711-729. Aufsatz, W., Stoiber, T., Rakic, B., and Naumann, K. (2007). Arabidopsis histone deacetylase 6: a green link to RNA silencing. Oncogene 26, 5477-5488. Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research 21, 381-395. Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837. Beisel, C., Imhof, A., Greene, J., Kremmer, E., and Sauer, F. (2002). Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419, 857-862. Berger, S.L. (2007). The complex language of chromatin regulation during transcription. Nature 447, 407-412. Berr, A., McCallum, E.J., Menard, R., Meyer, D., Fuchs, J., Dong, A., and Shen, W.H. (2010). Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. Plant Cell 22, 3232-3248. Cartagena, J.A., Matsunaga, S., Seki, M., Kurihara, D., Yokoyama, M., Shinozaki, K., Fujimoto, S., Azumi, Y., Uchiyama, S., and Fukui, K. (2008). The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Development Biology 315, 355-368. Castillo-Gonzalez, C., Liu, X., Huang, C., Zhao, C., Ma, Z., Hu, T., Sun, F., Zhou, Y., Zhou, X., Wang, X.J., and Zhang, X. (2015). Geminivirus-encoded TrAP suppressor inhibits the histone methyltransferase SUVH4/KYP to counter host defense. Elife 4, e06671. Chen, L.T., and Wu, K. (2010). Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signaling & Behavior 5, 1318-1320. Chen, L.T., Luo, M., Wang, Y.Y., and Wu, K. (2010). Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. Journal of Experimental Botany 61, 3345-3353. Dillon, S.C., Zhang, X., Trievel, R.C., and Cheng, X. (2005). The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biology 6, 227. Ding, Y., Wang, X., Su, L., Zhai, J., Cao, S., Zhang, D., Liu, C., Bi, Y., Qian, Q., Cheng, Z., Chu, C., and Cao, X. (2007). SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Plant Cell 19, 9-22. Ebbs, M.L. (2006). Locus-Specific Control of DNA Methylation by the Arabidopsis SUVH5 Histone Methyltransferase. The Plant Cell Online 18, 1166-1176. Ebbs, M.L., Bartee, L., and Bender, J. (2005). H3 Lysine 9 Methylation Is Maintained on a Transcribed Inverted Repeat by Combined Action of SUVH6 and SUVH4 Methyltransferases. Molecular and Cellular Biology 25, 10507-10515. Galasinski, S.C., Resing, K.A., Goodrich, J.A., and Ahn, N.G. (2002). Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. Journal of Biological Chemistry 277, 19618-19626. Gendrel, A.-V., Lippman, Z., Martienssen, R., and Colot, V. (2005). Profiling histone modification patterns in plants using genomic tiling microarrays. Nature Methods 2, 213-218. Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature 389, 349-352. Guo, L., Yu, Y., Law, J.A., and Zhang, X. (2010). SET DOMAIN GROUP2 is the major histone H3 lysine 4 trimethyltransferase in Arabidopsis. Proceedings of the National Academy of Sciences 107, 18557-18562. Hollender, C., and Liu, Z. (2008). Histone deacetylase genes in Arabidopsis development. Journal of Integrative Plant Biology 50, 875-885. Hunter, T. (1995). Protein Kinases and Phosphatases:The Yin and Yang of Protein Phosphorylation and Signaling. Cell Vol. 80,225-236. Jenuwein, T., Laible, G., Dorn, R., and Reuter, G. (1998). SET domain proteins modulate chromatin domains in eu-and heterochromatin. Cellular and Molecular Cellular and Molecular Life Sciences 54, 80-93. Johnson, L.M., Law, J.A., Khattar, A., Henderson, I.R., and Jacobsen, S.E. (2008). SRA-domain proteins required for DRM2-mediated de novo DNA methylation. PLoS Genetics 4, e1000280. Johnson, L.M., Bostick, M., Zhang, X., Kraft, E., Henderson, I., Callis, J., and Jacobsen, S.E. (2007). The SRA methyl-cytosine-binding domain links DNA and histone methylation. Current Biology 17, 379-384. Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693-705. Kuhn, R.M., Karolchik, D., Zweig, A.S., Wang, T., Smith, K.E., Rosenbloom, K.R., Rhead, B., Raney, B.J., Pohl, A., Pheasant, M., Meyer, L., Hsu, F., Hinrichs, A.S., Harte, R.A., Giardine, B., Fujita, P., Diekhans, M., Dreszer, T., Clawson, H., Barber, G.P., Haussler, D., and Kent, W.J. (2009). The UCSC Genome Browser Database: update 2009. Nucleic Acids Research 37, D755-761. Lan, F., Bayliss, P.E., Rinn, J.L., Whetstine, J.R., Wang, J.K., Chen, S., Iwase, S., Alpatov, R., Issaeva, I., and Canaani, E. (2007). A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449, 689-694. Lawrence, R.J., Earley, K., Pontes, O., Silva, M., Chen, Z.J., Neves, N., Viegas, W., and Pikaard, C.S. (2004). A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Molecular Cell 13, 599-609. Lee, M.G., Wynder, C., Bochar, D.A., Hakimi, M.A., Cooch, N., and Shiekhattar, R. (2006). Functional interplay between histone demethylase and deacetylase enzymes. Molecular and Cellular Biology 26, 6395-6402. Lippman, Z., May, B., Yordan, C., Singer, T., and Martienssen, R. (2003). Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biology 1, e67. Liu, X., Yu, C.W., Duan, J., Luo, M., Wang, K., Tian, G., Cui, Y., and Wu, K. (2012). HDA6 directly interacts with DNA methyltransferase MET1 and maintains transposable element silencing in Arabidopsis. Plant Physiology 158, 119-129. Luo, M., Wang, Y.Y., Liu, X., Yang, S., Lu, Q., Cui, Y., and Wu, K. (2012a). HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. Journal of Experimental Botany 63, 3297-3306. Luo, M., Tai, R., Yu, C.W., Yang, S., Chen, C.Y., Lin, W.D., Schmidt, W., and Wu, K. (2015). Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis. The Plant Journal 82, 925-936. Luo, M., Yu, C.W., Chen, F.F., Zhao, L., Tian, G., Liu, X., Cui, Y., Yang, J.Y., and Wu, K. (2012b). Histone deacetylase HDA6 is functionally associated with AS1 in repression of KNOX genes in arabidopsis. PLoS Genetics 8, e1003114. Lusser, A., Kolle, D., and Loidl, P. (2001). Histone acetylation: lessons from the plant kingdom. Trends in Plant Science 6, 59-65. Muller, J., Hart, C.M., Francis, N.J., Vargas, M.L., Sengupta, A., Wild, B., Miller, E.L., O'Connor, M.B., Kingston, R.E., and Simon, J.A. (2002). Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197-208. Mathieu, O., Probst, A.V., and Paszkowski, J. (2005). Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis. The EMBO Journal 24, 2783-2791. Motamedi, M.R., Hong, E.-J.E., Li, X., Gerber, S., Denison, C., Gygi, S., and Moazed, D. (2008). HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Molecular Cell 32, 778-790. Murfett, J., Wang, X.-J., Hagen, G., and Guilfoyle, T.J. (2001). Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. The Plant Cell 13, 1047-1061. Naumann, K., Fischer, A., Hofmann, I., Krauss, V., Phalke, S., Irmler, K., Hause, G., Aurich, A.C., Dorn, R., and Jenuwein, T. (2005). Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. The EMBO Journal 24, 1418-1429. Nightingale, K.P., Gendreizig, S., White, D.A., Bradbury, C., Hollfelder, F., and Turner, B.M. (2007). Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. Journal of Biological Chemistry 282, 4408-4416. Pandey, R., MuEller, A., Napoli, C.A., Selinger, D.A., Pikaard, C.S., Richards, E.J., Bender, J., Mount, D.W., and Jorgensen, R.A. (2002). Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Research 30, 5036-5055. Perrella, G., Lopez-Vernaza, M.A., Carr, C., Sani, E., Gossele, V., Verduyn, C., Kellermeier, F., Hannah, M.A., and Amtmann, A. (2013). Histone deacetylase complex1 expression level titrates plant growth and abscisic acid sensitivity in Arabidopsis. Plant Cell 25, 3491-3505. PERSSON, K. (1976). Modification of the eye colour mutant zeste by suppressor, enhancer and minute genes in Drosophila melanogaster. Hereditas 82, 111-119. Pflum, M.K.H., Tong, J.K., Lane, W.S., and Schreiber, S.L. (2001). Histone deacetylase 1 phosphorylation promotes enzymatic activity and complex formation. Journal of Biological Chemistry 276, 47733-47741. Pien, S., Fleury, D., Mylne, J.S., Crevillen, P., Inze, D., Avramova, Z., Dean, C., and Grossniklaus, U. (2008). ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. Plant Cell 20, 580-588. Probst, A.V., Fagard, M., Proux, F., Mourrain, P., Boutet, S., Earley, K., Lawrence, R.J., Pikaard, C.S., Murfett, J., Furner, I., Vaucheret, H., and Mittelsten Scheid, O. (2004). Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell 16, 1021-1034. Rajakumara, E., Law, J.A., Simanshu, D.K., Voigt, P., Johnson, L.M., Reinberg, D., Patel, D.J., and Jacobsen, S.E. (2011). A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo. Genes & Development 25, 137-152. Schubert, H.L., Blumenthal, R.M., and Cheng, X. (2003). Many paths to methyltransfer: a chronicle of convergence. Trends in Biochemical Sciences 28, 329-335. Shi, Y.J., Matson, C., Lan, F., Iwase, S., Baba, T., and Shi, Y. (2005). Regulation of LSD1 histone demethylase activity by its associated factors. Molecular Cell 19, 857-864. Suganuma, T., and Workman, J.L. (2008). Crosstalk among Histone Modifications. Cell 135, 604-607. Sun, Y.W., Tee, C.S., Ma, Y.H., Wang, G., Yao, X.M., and Ye, J. (2015). Attenuation of Histone Methyltransferase KRYPTONITE-mediated transcriptional gene silencing by Geminivirus. Scientific Reports 5, 16476. Tamada, Y., Yun, J.Y., Woo, S.C., and Amasino, R.M. (2009). ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. Plant Cell 21, 3257-3269. Tanaka, M., Kikuchi, A., and Kamada, H. (2008). The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiology 146, 149-161. Tariq, M., and Paszkowski, J. (2004). DNA and histone methylation in plants. TRENDS in Genetics 20, 244-251. Thorstensen, T., Grini, P.E., and Aalen, R.B. (2011). SET domain proteins in plant development. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1809, 407-420. Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G., and Reuter, G. (1994). The protein encoded by the Drosophila position-effect variegation suppressor gene Su (var) 3-9 combines domains of antagonistic regulators of homeotic gene complexes. The EMBO Journal 13, 3822. Tsuda, K., Qi, Y., Nguyen, L.V., Bethke, G., Tsuda, Y., Glazebrook, J., and Katagiri, F. (2012). An efficient Agrobacterium‐mediated transient transformation of Arabidopsis. The Plant Journal 69, 713-719. Turner, B.M. (2000). Histone acetylation and an epigenetic code. Bioessays 22, 836-845. Vaute, O., Nicolas, E., Vandel, L., and Trouche, D. (2002). Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Research 30, 475-481. Vermeulen, M., Eberl, H.C., Matarese, F., Marks, H., Denissov, S., Butter, F., Lee, K.K., Olsen, J.V., Hyman, A.A., Stunnenberg, H.G., and Mann, M. (2010). Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142, 967-980. Walters, M.S., Erazo, A., Kinchington, P.R., and Silverstein, S. (2009). Histone deacetylases 1 and 2 are phosphorylated at novel sites during varicella-zoster virus infection. Journal of Virology 83, 11502-11513. Yu, C.W., Liu, X., Luo, M., Chen, C., Lin, X., Tian, G., Lu, Q., Cui, Y., and Wu, K. (2011). HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiology 156, 173-184. Zhang, X., Tamaru, H., Khan, S.I., Horton, J.R., Keefe, L.J., Selker, E.U., and Cheng, X. (2002). Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111, 117-127. Zhang, Y., and Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes & Development 15, 2343-2360. Zhao, Z., Yu, Y., Meyer, D., Wu, C., and Shen, W.H. (2005). Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nature Cell Biology 7, 1256-1260. Zheng, J., Chen, F., Wang, Z., Cao, H., Li, X., Deng, X., Soppe, W.J., Li, Y., and Liu, Y. (2012). A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. New Phytologist 193, 605-616. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50691 | - |
dc.description.abstract | SUVH4, SUVH5和SUVH6(SUVH4/5/6)是組蛋白H3賴氨酸9(H3K9)甲基轉移酶,都屬於SET結構域蛋白中SUV(R)亞群。我們發現SUVH4、 SUVH5以及SUVH6都位於細胞核內,並且可以與組蛋白去乙醯化酶HDA6相互作用。通過酵母雙雜交試驗我們發現HDA6的C端及SUVH5的C端對於他們之間的相互作用有關鍵的作用。此外,HDA6的絲氨酸S427的磷酸化會影響它與SUVH5/6的相互作用。通過對RNA-seq的資料分析,我們發現有許多轉座子的表達在hda6-6和suvh4 suvh5 suvh6 (suvh456)的突變體中都有上調,表明SUVH4/5/6和HDA6會共同調控轉座子表達。此外,在had6-6 及suvh456三重突變體中,組蛋白乙醯化水準上升了,而組蛋白H3K9的甲基化水準下降了。同時我們發現在hda6-6 及suvh456三重突變體中,轉座子AT5G59620和AT2G26630的H3K9二甲基化水準下降了。這些結果表明SUVH4/5/6可以通過與HDA6互作改變轉座子的組蛋白甲基化和乙醯化狀態,調控轉座子沉默。 | zh_TW |
dc.description.abstract | SUVH4, SUVH5 and SUVH6 (SUVH4/5/6) are histone H3 lysine 9 methyltransferases belonging to the SUV(R) group of SET domain proteins. I found that SUVH4, SUVH5 and SUVH6 are all localized in the nucleus and interact with the histone deacetylase HDA6. Both the C-terminal domains of HDA6 and SUVH5 are responsible for their interaction. In addition, phosphorylation on S427 of HDA6 may play an important role for the interaction of HDA6 and SUVH5/6. By the RNA-seq data analysis, we found that a number of transposons are up-regulated in both hda6-6 and suvh4 suvh5 suvh6 (suvh456) mutants, indicating that SUVH4/5/6 and HDA6 act in concert to regulate transposons. Furthermore, the level of histone acetylation is increased but the level of H3 K9 methylation is decreased in hda6-6 and suvh456 triple mutants. The level of H3K9Me2 in the transposons AT5G59620 and AT2G26630 is also decreased in hda6-6 and suvh456. Taken together, these results indicated that HDA6 and SUVH4/5/6 function together to regulate transposon silencing. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:52:54Z (GMT). No. of bitstreams: 1 ntu-105-R03b42033-1.pdf: 3636608 bytes, checksum: 0f882e5213553c096f9a2727c2e1a19a (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III List of Figures VII List of Supplementary Figures IX List of Supplementary Tables X List of Abbreviations XI 1. Introduction 1 1.1 SET domain proteins in Arabidopsis 1 1.2 Function of SET domain proteins in Arabidopsis 3 1.3 Histone deacetylases in Arabidopsis 4 1.4 Crosstalk of histone methylation and acetylation 6 2. Materials and Methods 8 2.1 Plant materials 8 2.2 Quick DNA extraction 8 2.3 RNA isolation 9 2.4 DNase treatment 10 2.5 Quantitative RT-PCR analysis 11 2.6 Bimolecular Fluorescence Complementation (BiFC) assays 12 2.7 Yeast two-hybrid assays 15 2.8 Transfection of tobacco or GVG leaves by Agrobacterium (For Co-Immunoprecipitation) 17 2.9 Histone modification assay 18 2.10 Chromatin immunoprecipitation assays 21 3. Results 29 3.1 The phylogenic tree of SU(VAR)3-9 group proteins 29 3.2 Expression and localization of SUVH4, SUVH5 and SUVH6 29 3.3 SUVH5 interacted with the RPD3-type HDACs 30 3.4 Identification of interaction domains of HDA6 and SUVH5 31 3.5 Phosphorylation on S427 of HDA6 affected its interaction with SUVH5 and SUVH6 31 3.6 Identification of homozygous T-DNA insertion mutants of SUVH4, SUVH5, SUVH6 32 3.7 HDA6 may act in concert with SUVH4/5/6 to regulate transposons 33 3.8 The histone modification level of transposons was altered in the suvh456 triple mutant 34 4. Discussion 36 4.1 SUVH4/5/6 are involved in seed dormancy and germination 36 4.2 HDA6 phosphorylation affects its interaction with SUVH5/6 36 4.3 SUVH4/5/6 act together with HDA6 to regulate transposons 37 Figures 40 References 63 Supplementary Figures 63 Supplementary Tables 78 | |
dc.language.iso | en | |
dc.title | 組蛋白甲基化轉移酶SUVH4,SUVH5和SUVH6與HDA6共同調控轉座子 | zh_TW |
dc.title | The histone methyltransferases SUVH4, SUVH5 and SUVH6 act in concert with HDA6 to regulate transposons | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林讚標,鄭貽生,涂世隆,陳柏仰 | |
dc.subject.keyword | 阿拉伯芥,組蛋白甲基化轉移?,組蛋白去乙醯化?,轉座子, | zh_TW |
dc.subject.keyword | Arabidopsis,histone methyltransferases,histone deacetylases,transposons, | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU201601012 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-19 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 3.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。