請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50679完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁宗蘇(Tzung-Su DING) | |
| dc.contributor.author | Yan-You Chen | en |
| dc.contributor.author | 陳彥佑 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:52:16Z | - |
| dc.date.available | 2017-08-03 | |
| dc.date.copyright | 2016-08-03 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-19 | |
| dc.identifier.citation | Assmann, E. Principles of forest yield study. New York: Pergamon Press. 1970.
Boudon, F., C. Godin, C. Pradal, O. Puech, and H. Sinoquet. Estimating the fractal dimension of plants using the two-surface method: An analysis based on 3d-digitized tree foliage. Fractals, 14(03):149–163, 2006. Bréda, N. J. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54(392):2403-2417, 2003. Chen, J., T. Black, and R. Adams. Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand. Agricultural and Forest Meteorology, 56(1):129–143, 1991. Chen, J. M., A. Govind, O. Sonnentag, Y. Zhang, A. Barr, and B. Amiro. Leaf area index measurements at fluxnet-Canada forest sites. Agricultural and Forest Meteorology, 140(1):257–268, 2006. Chou, C. H. Roles of allelopathy in plant biodiversity and sustainable agriculture. Critical Reviews in Plant Sciences, 18(5):609–636, 1999. Chou, C. H. and C. M. Yang. Allelopathic research of subtropical vegetation in Taiwan II. comparative exclusion of understory by Phyllostachys edulis and cryptomeria japonica. Journal of Chemical Ecology, 8(12):1489–1507, 1982. CloudCompare Team. CloudCompare (version 2.6.3) [GPL software], 2015. URL http://www.cloudcompare.org/. Dutilleul, P., L. Han, F. Valladares, and C. Messier. Crown traits of coniferous trees and their relation to shade tolerance can differ with leaf type: a biophysical demonstration using computed tomography scanning data. Frontiers in Plant Science, 6, 2015. 42Eloy, C. Leonardo’s rule, self-similarity, and wind-induced stresses in trees. Physical Review Letters, 107(25):258101, 2011. Frew, M. S., D. L. Evans, H. A. Londo, W. H. Cooke, and D. Irby. Measuring Douglas-fir crown growth with multitemporal lidar. Forest Science, 2015. Habel, K., R. Grasman, R. B. Gramacy, A. Stahel, and D. C. Sterratt. geometry: Mesh Generation and Surface Tesselation, 2015. URL https://CRAN.R-project.org/ package=geometry. R package version 0.3-6. Lovell, J., D. L. Jupp, D. Culvenor, and N. Coops. Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Canadian Journal of Remote Sensing, 29(5):607–622, 2003. Mandelbrot, B. How long is the coast of Britain? statistical self-similarity and fractional dimension. Science, 156(3775):636–638, 1967. Navarro-Cerrillo, R. M., M. Sánchez de la Orden, J. Gómez-Bonilla, A. García-Ferrer,R. Hernández-Clemente, and S. Lanjeri. LIDAR-based estimation of leaf area index on Holm oak [Quercus ilex L. subsp ballota (Desf.) Samp.] trees. Forest Systems, 19(1): 61–69, 2010. Prusinkiewicz, P. and A. Lindenmayer. The Algorithmic Beauty of Plants (The Virtual Laboratory). Springer, 1991. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2013. URL http://www.R-project.org/. Rody, Y. P., A. Ribeiro, J. E. M. Pezzopane, J. M. Gleriani, A. Q. Almeida, and F. P.Leite. Estimates of the leaf area index (LAI) using LAI-2000 and hemispherical photos in eucalyptus plantations. Ciência Florestal, 24(4):925–934, 2014. 43Sakai, S., M. Nakamura, K. Furuya, N. Amemura, M. Onishi, I. Iizawa, J. Nakata, K. Yamaji, R. Asano, and K. Tamotsu. Sierpinski’s forest: new technology of cool roof with fractal shapes. Energy and Buildings, 55:28–34, 2012. Seidel, D., P. Schall, M. Gille, and C. Ammer. Relationship between tree growth and physical dimensions of fagus sylvatica crowns assessed from terrestrial laser scanning. iForest-Biogeosciences and Forestry, page 877, 2015. Voytekhovsky, Y. L. Are crowns of Betula pubescence Ehrh. fractal? Paleontological Journal, 48(12):1315–1323, 2014. Yang, H., W. Chen, T. Qian, D. Shen, and J. Wang. The extraction of vegetation points from LiDAR using 3d fractal dimension analyses. Remote Sensing, 7(8):10815–10831, 2015. Yun, T., W. Li, Y. Sun, and L. Xue. Study of subtropical forestry index retrieval using terrestrial laser scanning and hemispherical photography. Mathematical Problems in Engineering, 2015, 2015. Zeide, B. Fractal geometry in forestry applications. Forest Ecology And Management, 46 (3-4):179–188, 1991. Zeide, B. Fractal analysis of foliage distribution in loblolly pine crowns. Canadian journal of forest research, 28(1):106–114, 1998. Zeide, B. and C. A. Gresham. Fractal dimensions of tree crowns in three loblolly pine plantations of coastal South Carolina. Canadian Journal of Forest Research, 21(8):1208–1212, 1991. Zeide, B. and P. Pfeifer. A method for estimation of fractal dimension of tree crowns. Forest Science, 37(5):1253–1265, 1991. Zhu, J., X. Wang, J. Chen, H. Huang, and X. Yang. Estimating fractal dimensions of tree crowns in 3-d space based on structural relationships. The Forestry Chronicle, 90(2):177–183, 2014. 44王子定與郭寶章, 臺灣孟宗竹林之乾物生產與生物性養分循環, 國家科學委員會補助計劃總結報告, 行政院國家科委員會, 1985。 林維治, 臺灣竹類生長之研究, 臺灣省林業試驗所研究報告, (54), 1958。 林維治, 台灣竹科植物分類之研究, 林維治先生竹類論文集, 臺灣省林業試驗所報告, (69):33–180, 1961。 林 登 秋 與 江 智 民, 半 球 面 影 像 在 森 林 生 態 研 究 的 應 用, 臺 灣 林 業 科 學, 17(3):387–400, 2002。 高毓斌, 孟宗竹林之地上部生物量、淨生產量及氮積聚, 碩士論文, 國立臺灣大學森林研究所, 1980。 謝榮生, 孟宗竹及麻竹解剖構造與滲透性質之研究, 碩士論文, 國立臺灣大學森林研究所, 1992。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50679 | - |
| dc.description.abstract | 本研究結合雙表面法與光達技術, 建立孟宗竹外罩表面積、樹冠碎形維度與全株葉面積三者之間的關係式, 除了印證雙表面法在估計植物葉面積的功效外, 還比較錐狀體法、拋物體法、雙橢球法、凸包法與樹冠解析法等五種植物外罩表面積的估算方法, 並進一步比較孟宗竹樹冠碎形維度與先前研究的差異。
結果顯示, 雙表面法如果搭配光達來估算樹冠碎形維度,孟宗竹全株葉面積無截距迴歸的決定係數可達 0.85。 外罩表面積的估算,以光達測量的凸包法表現最佳, 其次為人工測量的拋物體法。顯見雖然沒有光達測量, 透過人工的方式計算外罩表面積也有近似的成果。 孟宗竹葉平均碎形維度為 2.186, 接近先前研究的優勢木 2.2。未來如果不需要精確估算植物葉面積, 可考慮採用 2.2 的碎形維度數值。 本研究認為, 雙表面法確實可應用於推估植物的葉面積, 但其目標以單株植物或人工林純林為佳。 以光達輔助測量可得到較佳的結果, 但亦可使用相近植物種的碎形維度數值及人工測量植物外罩表面積來取代光達測量。 | zh_TW |
| dc.description.abstract | This study was aimed to combine two-surface method with LiDAR technology, and to construct an equation which included envelope surface,
canopy fractal dimension and total leaf area of Moso bamboo ({sl Phyllostachys edulis}). Except of canopy fractal dimension, I also compared five methods of estimating bamboo envelope surface, which includes cone-shape method, paraboloid-shape method, double-ellipsoid-shape method, convex hull method and canopy analysis method. Results showed that, by combining two-surface method with LiDAR, the coefficient of determination in linear regression without the intercept term could reach up to 0.85. By correlating with total leaf area, convex hull method aided by LiDAR performed best in estimating envelope surface, seconded by paraboloid-shape method of manual measurement. This indicates estimating envelope surface by manual measurement could have similar performance with methods estimating by LiDAR. Mean fractal dimension of Moso bamboo was 2.186, close to the estimated 2.2 for dominant trees in previous studies. One could consider using 2.2 as fractal dimension for rough estimates of leaf area for moso bamboo in the future. I conclude two-surface method can be applied to estimate leaf area of plants and is especially suitable for single plants or monocultural plantations. Estimation aided by LiDAR should provide better results. However, the LiDAR measurement could be replaced by using fractal dimension estmates for similar plant species and manual measurements of envelope surface. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:52:16Z (GMT). No. of bitstreams: 1 ntu-105-R03625063-1.pdf: 2303603 bytes, checksum: 598b6b6f2151cc873da941136ef38bd7 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 圖目錄 vii 表目錄 viii 1 簡介 1 2 文獻回顧 4 2.1 孟宗竹 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 碎形與碎形維度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 碎形維度的計算方法 -計盒維數 . . . . . . . . . . . . . . . . . . . . . 8 2.4 雙表面法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 光學雷達 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 材料與方法 15 3.1 資料取得流程 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 選定樣區 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 整理樣區 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 光達掃描 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.5 估算外罩表面積 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5.1 錐狀體法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5.2 拋物體法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.5.3 雙橢球法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5.4 凸包法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5.5 樹冠解析法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6 蒐集樹葉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.7 掃描竹葉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.8 計算全株葉面積 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.9 以計盒維數法計算竹子的碎形維度 . . . . . . . . . . . . . . . . . . . 24 3.10 外罩表面積, 碎形維度與估計葉面積的迴歸 . . . . . . . . . . . . . . . 24 3.11 統計方法說明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 結果 26 4.1 孟宗竹林基本資訊 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 計盒法與碎形維度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 孟宗竹的碎形維度分佈 . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4 全取群與抽樣群推估葉面積無顯著差異 . . . . . . . . . . . . . . . . . 28 4.5 孟宗竹葉大小與年齡分級有關 . . . . . . . . . . . . . . . . . . . . . . 28 4.6 五種不同估算外罩表面積方法 . . . . . . . . . . . . . . . . . . . . . . 29 4.7 估計葉面積對 E ′ 的無截距迴歸, 以凸包法最佳 . . . . . . . . . . . . . 29 4.8 外罩表面積之間的比較 . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.9 碎形維度個體與平均的差異不大 . . . . . . . . . . . . . . . . . . . . . 31 5 討論 34 5.1 碎形維度的分佈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 光達的掃描技術 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3 五種外罩測量方法的比較 . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.4 孟宗竹葉子大小與其他屬性的關係 . . . . . . . . . . . . . . . . . . . 37 5.5 雙表面法的成效 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.6 本研究的適用範圍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.7 本研究的啟發與延伸應用 . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.8 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.8.1 雙表面法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.8.2 外罩表面積計算 . . . . . . . . . . . . . . . . . . . . . . . . . . 40 vi5.8.3 光達資料計算 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.8.4 碎形維度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 參考文獻 42 附錄 45 附錄一 -計盒維數程式碼 46 附錄二 -資料表 49 附錄三 -旋轉拋物體表面積計算證明 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光學雷達 | zh_TW |
| dc.subject | 碎形維度 | zh_TW |
| dc.subject | 計盒維數 | zh_TW |
| dc.subject | 凸包 | zh_TW |
| dc.subject | 點雲 | zh_TW |
| dc.subject | 碎形維度 | zh_TW |
| dc.subject | 光學雷達 | zh_TW |
| dc.subject | 計盒維數 | zh_TW |
| dc.subject | 凸包 | zh_TW |
| dc.subject | 點雲 | zh_TW |
| dc.subject | Fractal Dimension | en |
| dc.subject | Point cloud | en |
| dc.subject | Convex hull | en |
| dc.subject | Box-counting | en |
| dc.subject | Fractal Dimension | en |
| dc.subject | Point cloud | en |
| dc.subject | Convex hull | en |
| dc.subject | Box-counting | en |
| dc.title | 結合雙表面法與光達技術估計孟宗竹之葉面積 | zh_TW |
| dc.title | Combining Two-surface Method with LiDAR Technology to Estimate Leaf Area of Moso Bamboo | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宋國彰(Guo-Zhang Song),林登秋(Teng-Chiu Lin),林增毅(Tzeng-Yih Lam) | |
| dc.subject.keyword | 碎形維度,光學雷達,計盒維數,凸包,點雲, | zh_TW |
| dc.subject.keyword | Fractal Dimension,Box-counting,Convex hull,Point cloud, | en |
| dc.relation.page | 55 | |
| dc.identifier.doi | 10.6342/NTU201601042 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
