請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50650
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉力瑜(Li-Yu Liu) | |
dc.contributor.author | Hsiang-Chi Huang | en |
dc.contributor.author | 黃纕淇 | zh_TW |
dc.date.accessioned | 2021-06-15T12:50:42Z | - |
dc.date.available | 2018-09-13 | |
dc.date.copyright | 2016-09-13 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-20 | |
dc.identifier.citation | Adugna, A. (2007). Assessment of yield stability in sorghum. African Crop Science Journal, 15(2).
Ceccarelli, S., Grando, S., & Baum, M. (2007). Participatory plant breeding in water-limited environments. Experimental Agriculture, 43(04), 411-435. Cornelius, P., Seyedsadr, M., & Crossa, J. (1992). Using the shifted multiplicative model to search for “separability” in crop cultivar trials. Theoretical and Applied Genetics, 84(1-2), 161-172. DeLacy, I., Basford, K., Cooper, M., Bull, J., & McLaren, C. (1996). Analysis of multi-environment trials–an historical perspective. Plant adaptation and crop improvement, 39124. Dias, C. T. d. S., & Krzanowski, W. J. (2006). Choosing components in the additive main effect and multiplicative interaction (AMMI) models. Scientia Agricola, 63(2), 169-175. dos S, D., Carlos, T., & Krzanowski, W. J. (2003). Model selection and cross validation in additive main effect and multiplicative interaction models. Crop Science, 43(3), 865-873. Gabriel ,K.R. (1971). The biplot graphic display of matrices with application to principal component analysis. Biometrika, 58(3), 1-10. Gauch Jr, H. G., & Zobel, R. W. (1988). Predictive and postdictive success of statistical analyses of yield trials. Theoretical and Applied Genetics, 76(1), 1-10. Gauch Jr, H. G., & Zobel, R. W. (1990). Imputing missing yield trial data. Theoretical and Applied Genetics, 79(6), 753-761. Gauch Jr, H. (1992). Statistical analysis of regional yield trials: AMMI analysis of factorial designs: Elsevier Science Publishers. Paderewski, J. (2013). An R function for imputation of missing cells in two-way data sets by EM-AMMI algorithm. Communications in Biometry and Crop Science8, 2, 60-69. Paderewski, J., & Rodrigues, P. C. (2014). The usefulness of EM-AMMI to study the influence of missing data pattern and application to Polish post-registration winter wheat data. Australian Journal of Crop Science, 8(4), 640. Paderewski, J., Gauch, H. G., Mądry, W., & Gacek, E. (2015). AMMI Analysis of Four-Way Genotype× Location× Management× Year Data from a Wheat Trial in Poland. Crop Science. Yan, W., Pageau, D., Frégeau-Reid, J., & Durand, J. (2011). Assessing the representativeness and repeatability of test locations for genotype evaluation. Crop Science, 51(4), 1603-1610. Yan, W. (2013). Biplot analysis of incomplete two-way data. Crop Science, 53(1), 48-57. Yan, W. (2015). Mega-environment analysis and test location evaluation based on unbalanced multiyear data. Crop Science, 55(1), 113-122. Zobel, R. W., Wright, M. J., & Gauch, H. G. (1988). Statistical analysis of a yield trial. Agronomy Journal, 80(3), 388-393. 陳嘉瑩(2004),有關區域產量試驗之統計分析,國立臺灣大學農藝學研究所生物統計組碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50650 | - |
dc.description.abstract | 區域試驗施行於品系產量試驗之後,其目的為確保品系之產量與農藝性狀在不同環境下皆能具有良好表現,於不同地區或不同季節進行多重複的產量及農藝性狀評估,以討論基因型與環境交感對於作物產量或農藝性狀的穩定性及適應性影響。AMMI (Additive Main Effect and Multiplicative Interaction) 模式利用奇異值分解將交感項拆解成數個主成分之奇異值、品系或環境特徵向量以及殘差項,進行區域試驗資料的穩定性分析。然而AMMI模式奇異值分解的不允許基因型與環境組合的平均產量有缺值的情形,但多年度多重地區之區域試驗資料通常高度不均衡,限制育種家探討跨年度間基因型與環境的交感。
本研究利用EM-AMMI (Expectation-Maximization-Additive Main Effect and Multiplicative Interaction) 方式進行缺值估計,模擬結果顯示,當缺值比例小於50%時,EM-AMMI應採用第一主成分進行缺值估計,但當缺值比例超過50%時,則EM-AMMI應採用前三主成分進行缺值估計。本研究亦應用EM-AMMI於毛豆區域試驗資料之缺值估計,希望藉由適當缺值估計法提供完整的區域試驗資料,幫助育種家了解完詳之基因型與環境交感的資訊。 | zh_TW |
dc.description.abstract | The purpose of regional trials is to confirm yield and agronomic traits of lines have stable and good performance in different environments. Some statistical methods were proposed to explain the patterns of genotype and environment interactions in the regional trial data. Particularly, Additive Main Effect and Multiplicative Interaction (AMMI) model uses singular decomposition value (SVD) to decompose genotype by environment interaction into the singular values, the genotype eigenvectors, and the environment eigenvectors to carry out the stability analysis on the tested genotype. However, a major limitation of AMMI model is that SVD requires a complete two-way table of genotype and environment mean yields. A typical multi-year or multi-location regional trial data is usually highly unbalanced so that the investigation of genotype by environment interaction across years is restricted.
In this study we impute missing values by expectation-maximization-additive main effect and multiplicative interaction (EM-AMMI) method. The results of simulated data suggest to conduct EM-AMMI using one principal component to impute the missing values when the proportions of the missing values is less than 50%; when the proportion of missing values is more than 50%, we suggest to perform EM-AMMI using first three principal components. We also imputed the missing values of vegetable soybean regional trial data by EM-AMMI. In conclusion, providing a complete regional trial data by appropriate EM-AMMI can help the plant breeders to better understand of genotype by environment interaction. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:50:42Z (GMT). No. of bitstreams: 1 ntu-105-R03621202-1.pdf: 2238283 bytes, checksum: e16149e29f891ba0b89c4632bdfb6346 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 致謝.................................................i
摘要.................................................ii Abstract.............................................iii 目錄..................................................v 表目錄................................................vi 圖目錄................................................vii 第一章、序言...........................................1 第二章、材料與方法......................................4 一、AMMI模式(Additive Main Effects and Multiplicative Interaction Model).....................................4 二、缺值估計............................................6 三、缺值資料模擬.........................................8 I.結構式................................................9 II.隨機式...............................................9 四、臺灣毛豆區域試驗缺值估計與資料分系.....................11 第三章、結果............................................13 一、藉由模擬資料探討適當之主成分個數於不同缺值型態..........13 二、應用EM-AMMI缺值估計方法於實際區域試驗資料..............13 I.結構式缺值估計........................................14 II.隨機式缺值估計.......................................14 第四章、討論............................................18 一、結構式缺值比例與主成分個數對於EM-AMMI估計缺值準確性之影響.....................................................18 二、結構式缺值型態對於EM-AMMI估計缺值準確性之影響...........19 三、結構式與隨機是缺值對於EM-AMMI估計缺值準確性之比較.......22 四、資料樣本數大小與缺值比例對於EM-AMMI估計缺值準確性之影響..23 第五章、結論............................................27 參考文獻................................................29 附錄...................................................31 | |
dc.language.iso | zh-TW | |
dc.title | EM-AMMI之區域試驗資料缺值估計 | zh_TW |
dc.title | Imputation of Missing Values of Regional Trial Data by EM-AMMI | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 廖振鐸(Chen-Tuo Liao),胡凱康(Kai-Kang Hu) | |
dc.subject.keyword | AMMI模式,主成分,奇異值分解,EM-AMMI缺值估計法,基因與環境交感效應, | zh_TW |
dc.subject.keyword | additive main effects and multiplicative interaction model,principal component,singular value decomposition,expectation-maximization-additive main effect and multiplicative interaction,genotype by environment interaction, | en |
dc.relation.page | 31 | |
dc.identifier.doi | 10.6342/NTU201601125 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-21 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。