請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50643完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林文澧(Win-Li Lin) | |
| dc.contributor.author | Ting-Chuan Li | en |
| dc.contributor.author | 李婷娟 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:50:20Z | - |
| dc.date.available | 2018-08-02 | |
| dc.date.copyright | 2016-08-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-20 | |
| dc.identifier.citation | 1. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646-674 (2011).
2. Turley, S.J., Cremasco, V. & Astarita, J.L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol. 15, 669-682 (2015). 3. Ozdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X., Wu, C. C., Simpson, T. R., Laklai, H., Sugimoto, H., Kahlert, C., Novitskiy, S. V., De Jesus-Acosta, A., Sharma, P., Heidari, P., Mahmood, U., Chin, L., Moses, H. L., Weaver, V. M., Maitra, A., Allison, J. P., LeBleu, V. S. & Kalluri, R. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719-734 (2014). 4. Chen, F., Zhuang, X., Lin, L., Yu, P., Wang, Y., Shi, Y. & Hu, G. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 13, 45 (2015). 5. Wang, D. & DuBois, R.N. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis 36, 1085-1093 (2015). 6. Lindau, D., Gielen, P., Kroesen, M., Wesseling, P. & Adema, G.J. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138, 105-115 (2013). 7. Giraldo, N.A., Becht, E., Vano, Y., Sautes-Fridman, C. & Fridman, W.H. The immune response in cancer: from immunology to pathology to immunotherapy. Virchows Arch. 467, 127-135 (2015). 8. Fridman, W.H., Pagès, F., Sautès-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nat. Rev. Cancer 12, 298-306 (2012). 9. Wang, S., Zderic, V. & Frenkel, V. Extracorporeal, low-energy focused ultrasound for noninvasive and nondestructive targeted hyperthermia. Future Oncol. 6, 1497-1511 (2010). 10. Cheung, T. T., Fan, S. T., Chan, S. C., Chok, K. S., Chu, F. S., Jenkins, C. R., Lo, R. C., Fung, J. Y., Chan, A. C., Sharr, W. W., Tsang, S. H., Dai, W. C., Poon, R. T.& Lo, C. M. High-intensity focused ultrasound ablation: an effective bridging therapy for hepatocellular carcinoma patients. World J. Gastroenterol. 19, 3083-3089 (2013). 11. Goldberg, S.N., Gazelle, G.S. & Mueller, P.R. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am. J. Roentgenol. 174, 323-331 (2000). 12. Wu, F. High intensity focused ultrasound ablation and antitumor immune response. J. Acoust. Soc. Am. 134, 1695-1701 (2013). 13. Roti, J.L.R. Cellular responses to hyperthermia (40-46 degrees C): cell killing and molecular events. Int. J. Hyperthermia 24, 3-15 (2008). 14. Frey, B., Weiss, E. M., Rubner, Y., Wunderlich, R., Ott, O. J., Sauer, R., Fietkau, R. & Gaipl, U. S. Old and new facts about hyperthermia-induced modulations of the immune system. Int. J. Hyperthermia 28, 528-542 (2012). 15. Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R. & Riess, H. The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33-56 (2002). 16. Mouratidis, P.X., Rivens, I. & Ter Haar, G. A study of thermal dose-induced autophagy, apoptosis and necroptosis in colon cancer cells. Int. J. Hyperthermia 31, 476-488 (2015). 17. Shehata, I.A. Treatment with high intensity focused ultrasound: secrets revealed. Eur. J. Radiol. 81, 534-541 (2012). 18. Liu, H.L., Fan, C.H., Ting, C.Y. & Yeh, C.K. Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics 4, 432-444 (2014). 19. Bai, J.F., Liu, P. & Xu, L.X. Recent advances in thermal treatment techniques and thermally induced immune responses against cancer. IEEE Trans. Biomed. Eng. 61, 1497-1505 (2014). 20. Zhang, H.G., Mehta, K., Cohen, P. & Guha, C. Hyperthermia on immune regulation: a temperature's story. Cancer Lett. 271, 191-204 (2008). 21. Skitzki, J.J., Repasky, E.A. & Evans, S.S. Hyperthermia as an immunotherapy strategy for cancer. Curr Opin Investig Drugs 10, 550-558 (2009). 22. Paliwal, S. & Mitragotri, S. Therapeutic opportunities in biological responses of ultrasound. Ultrasonics 48, 271-278 (2008). 23. Toraya-Brown, S. & Fiering, S. Local tumour hyperthermia as immunotherapy for metastatic cancer. Int. J. Hyperthermia 30, 531-539 (2014). 24. Unga, J. & Hashida, M. Ultrasound induced cancer immunotherapy. Adv Drug Deliv Rev 72, 144-153 (2014). 25. Zhou, Q., Zhu, X. Q., Zhang, J., Xu, Z. L. & Lu, P. Changes in circulating immunosuppressive cytokine levels of cancer patients after high intensity focused ultrasound treatment. Ultrasound Med. Biol. 34, 81-87 (2008). 26. Dieing, A., Ahlers, O., Hildebrandt, B., Kerner, T., Tamm, I., Possinger, K. & Wust, P. The effect of induced hyperthermia on the immune system. Prog. Brain Res. 162, 137-152 (2007). 27. Chen, I. J., Yen, C. F., Lin, K. J., Lee, C. L., Soong, Y. K., Lai, C. H. & Lin, C. T. Vaccination with OK-432 followed by TC-1 tumor lysate leads to significant antitumor effects. Reprod. Sci. 18, 687-694 (2011). 28. Tian, Y. F., Tang, K., Guan, W., Yang, T., Xu, H., Zhuang, Q. Y. & Ye, Z. Q. OK-432 Suppresses Proliferation and Metastasis by Tumor Associated Macrophages in Bladder Cancer. Asian Pac. J. Cancer Prev. 16, 4537-4542 (2015). 29. Xu, M., Xing, Y., Zhou, L., Yang, X., Yao, W., Xiao, W., Ge, C., Ma, Y., Yang, J., Wu, J., Cao, R., Li, T. & Liu, J. Improved efficacy of therapeutic vaccination with viable human umbilical vein endothelial cells against murine melanoma by introduction of OK432 as adjuvant. Tumour Biol. 34, 1399-1408 (2013). 30. Yamaue, H., Tanimura, H., Tsunoda, T., Iwahashi, M., Tani, M., Tamai, M., Noguchi, K., Hotta, T. & Arii, K. Enhancement of tumor cell susceptibility to lymphokine-activated killer cells by treatment with the streptococcal preparation OK432. Biotherapy 5, 83-93 (1992). 31. Yamaue, H., Tanimura, H., Iwahashi, M., Tsunoda, T., Tani, M. & Inoue, M. Successful adoptive immunotherapy with OK432-inducible activated natural killer cells in tumor-bearing mice. Biotherapy 2, 51-61 (1990). 32. Nakagawa, H., Mizukoshi, E., Iida, N., Terashima, T., Kitahara, M., Marukawa, Y., Kitamura, K., Nakamoto, Y., Hiroishi, K., Imawari, M. & Kaneko, S. In vivo immunological antitumor effect of OK-432-stimulated dendritic cell transfer after radiofrequency ablation. Cancer Immunol. Immunother. 63, 347-356 (2014). 33. Hirayama, M., Nishikawa, H., Nagata, Y., Tsuji, T., Kato, T., Kageyama, S., Ueda, S., Sugiyama, D., Hori, S., Sakaguchi, S., Ritter, G., Old, L. J., Gnjatic, S. & Shiku, H. Overcoming regulatory T-cell suppression by a lyophilized preparation of Streptococcus pyogenes. Eur. J. Immunol. 43, 989-1000 (2013). 34. Akeda, T., Yamanaka, K., Kitagawa, H., Kawabata, E., Tsuda, K., Kakeda, M., Omoto, Y., Habe, K., Isoda, K., Kurokawa, I. & Mizutani, H. Intratumoral injection of OK-432 suppresses metastatic squamous cell carcinoma lesion inducing interferon-gamma and tumour necrosis factor-alpha. Clin. Exp. Dermatol. 37, 193-194 (2012). 35. Tano, T., Okamoto, M., Kan, S., Bando, T., Goda, H., Nakashiro, K., Shimodaira, S., Koido, S., Homma, S., Fujita, T., Sato, M., Yamashita, N., Hamakawa, H. & Kawakami, Y. Immunochemoradiotherapy for patients with oral squamous cell carcinoma: augmentation of OK-432-induced helper T cell 1 response by 5-FU and X-ray irradiation. Neoplasia 15, 805-814 (2013). 36. Yamada, T., Hayashi, Y., Kaneko, R., Tohnai, I., Ueda, M. & Ito, M. Effect of the combination of a local OK-432 injection and hyperthermia on SCC VII tumors in mice. J. Radiat. Res. 39, 101-109 (1998). 37. Childs, R.W. & Carlsten, M. Therapeutic approaches to enhance natural killer cell cytotoxicity against cancer: the force awakens. Nat. Rev. Drug Discov. 14, 487-498 (2015). 38. Yokoyama, W.M. & Plougastel, B.F. Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3, 304-316 (2003). 39. Bigley, A.B. & Simpson, R.J. NK cells and exercise: implications for cancer immunotherapy and survivorship. Discov. Med. 19, 433-445 (2015). 40. Besser, M. J., Shoham, T., Harari-Steinberg, O., Zabari, N., Ortenberg, R., Yakirevitch, A., Nagler, A., Loewenthal, R., Schachter, J. & Markel, G. Development of allogeneic NK cell adoptive transfer therapy in metastatic melanoma patients: in vitro preclinical optimization studies. PLoS One 8, e57922 (2013). 41. Vivier, E., Ugolini, S., Blaise, D., Chabannon, C. & Brossay, L. Targeting natural killer cells and natural killer T cells in cancer. Nat. Rev. Immunol. 12, 239-252 (2012). 42. Kruisbeek, A.M. Isolation of Mouse Mononuclear Cells. Current Protocols in Immunology. John Wiley & Sons, Inc., 2001. 43. Reichlin, A., Iizuka, K. & Yokoyama, W.M. Isolation of Murine Natural Killer Cells. Current Protocols in Immunology. John Wiley & Sons, Inc., 2001. 44. Chambers, W., Watkins, S. & Basse, P. Methods for In Vivo Analyses of Natural Killer (NK) Cells. In: Campbell, K. & Colonna, M. (eds). Natural Killer Cell Protocols, vol. 121. Humana Press, 2000, pp 95-114. 45. Basse, P., Whiteside, T. & Herberman, R. Use of Activated Natural Killer Cells for Tumor Immunotherapy in Mouse and Human. In: Campbell, K. & Colonna, M. (eds). Natural Killer Cell Protocols, vol. 121. Humana Press, 2000, pp 81-94. 46. Wennerberg, E., Kremer, V., Childs, R. & Lundqvist, A. CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo. Cancer Immunol. Immunother. 64, 225-235 (2015). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50643 | - |
| dc.description.abstract | 研究背景:時至今日,對於腫瘤共同特徵的研究,普遍已將「調控抗癌免疫機制」視為設計新一代癌症治療策略時的關鍵考量因素,希望藉由重新導正患者的免疫平衡,走向增強自身抗癌免疫力,進而達到提升腫瘤控制率,降低復發和轉移機率,延長存活期,提升整體治療效益之目的。而近年來,有越來越多的研究證據顯示超音波熱治療於「增強全身性或局部性抗癌免疫力」方面獨具潛力,主要透過揭露腫瘤抗原、活化發炎細胞、重新調整免疫系統平衡等方式,使得腫瘤細胞更容易被免疫系統清除。
研究目的:本研究利用脈衝式超音波熱治療(pUSHT)的熱效應與機械力作為披露腫瘤特異性抗原的主要工具,加上OK-432免疫刺激劑,刺激多種免疫細胞活化與擴增,誘發多種抗癌細胞因子分泌,再輔以過繼性自然殺手細胞轉移療法(ACT-NK),給予大量健康且胞殺能力增強的自然殺手細胞(NK),取代本身疲累且虛弱的NK細胞,可望達到大幅提升抗癌免疫力之效。 材料方法:為了能探討抗癌免疫力的引發成效,本研究使用兩種不同的腫瘤模式:雙側遠端腫瘤模式、再刺激腫瘤模式。在雙側遠端腫瘤模式部分,小鼠雙側背部被皮下植入CT26-luc-GFP大腸直腸癌細胞,右側作為治療側,左側作為遠端非治療側。治療側腫瘤被給予為期10天的治療,包含4次超音波熱治療(每3天1次)、4次OK-432皮下注射(每次熱治療前3小時)、2次NK細胞腫瘤內注射;遠端側腫瘤模擬影像上難見的小腫塊,作為評估抗癌免疫反應程度的依據。在再刺激腫瘤模式方面,小鼠右側背部皮下植入腫瘤細胞並待長成50~100 cm3實質腫瘤後,進行為期5天的合併治療,治療結束後隔天手術切除腫瘤及周圍皮下組織(含表皮),並待縫合傷口恢復並確定無原位腫瘤復發後,第10天於對側(左側)背部皮下重新植入腫瘤細胞,作為再刺激測試,觀察經OK+pUSHT+NK治療後,是否能建立足夠有效且長期的抗癌免疫力,抑制腫瘤復發機率。所有的實驗資料皆以獨立T檢定或ANOVA(搭配Fisher's LSD test多重比較)進行統計分析,P value設為0.05;存活率部分則使用Kaplan-Meier法進行統計檢定。 研究結果:根據實驗結果,在雙側遠端腫瘤模式部分,無論是在治療側或遠端側,OK+pUSHT+NK組的腫瘤生長和活性皆受到顯著性抑制,且該抑制效果有延長之趨勢。H&E切片染色可看出,OK+pUSHT+NK合併治療使得腫瘤組織內壞死情形更為嚴重、廣泛且提早;IF染色結果則顯示,經OK+pUSHT+NK合併治療後,治療側和遠端側腫瘤內NK細胞浸潤量皆大幅提升。而存活率於OK+pUSHT和OK+pUSHT+NK兩組也都明顯增加。此外,根據腫瘤再刺激測試結果,和Control組相比,OK+pUSHT和OK+pUSHT+NK組的再刺激腫瘤皆無法形成實質腫塊,顯示本研究治療策略確實能引發有效、長期且具記憶性的免疫反應。 結論:本研究證實了超音波熱治療的確具有作為癌症免疫治療輔助工具的高度潛力,能透過抗原揭露和破壞免疫抑制微環境,重新調整免疫系統平衡,活化抗癌相關免疫反應,再結合多種免疫療法或刺激劑進一步增強此抗癌效益,實為未來足具發展潛力的抗癌合併治療策略。 | zh_TW |
| dc.description.abstract | Background: The capability of tumors for modulating anti-tumor immune response and orchestrating an immune permissive microenvironment was reported as one of the cancer hallmarks. Therefore, unlike the past concept of cancer therapy which simply aims at killing tumor cells and ignores the tolerance of the host itself to the immune-mediated attack, the emerging strategy for cancer treatment includes not only extirpating all localized tumor cells, but also arousing a systemic, long-lasting, and tumor-specific immune response synchronously, against tumor growth, recurrence and metastasis to achieve the ultimate objective: prolongation of survival times. In addition, ultrasound hyperthermia has been used against various types of cancer and recent studies demonstrated its potential of activating a systemic anti-tumor immune response.
Purpose: To evaluate whether an inducible anti-tumor immunity could be enhanced systemically through combining immunotherapies, in this study we exposed immunogenic moieties from tumor cells by sonicating tumors with pulsed ultrasound hyperthermia (pUSHT) and strengthened the anti-cancer immunity in an all-round way by injecting tumors with OK-432 immunostimulant and adoptive natural killer cell transfer therapy (ACT-NK). Methods and Materials: A bilateral distant tumor model and a rechallenging tumor model were applied in the studies. For the bilateral distant tumor model, male BALB/c mice were inoculated CT26-luc-GFP tumors on both flanks. The treated tumor (right side) underwent a 10-day treatment including four times of pUSHT (once per 3 days), four times of subcutaneous OK-432 injection (3 hours before each pUSHT) and two times of local ACT-NK injection. The distant untreated tumor (left side) was regarded as a non-visualized small tumor used to assess the degree of anti-tumor immune response. For the rechallenging tumor model, a rechallenge tumor was implanted contralaterally on day 10 after the right-sided tumor had experienced a 5-day treatment (days 0~4) and then a surgical removal on day 5. This model was designed to evaluate whether or not the establishment of a long-term active tumor-specific immune memory is strong enough to prevent recurrence. All data was analyzed statistically by independent T-test or ANOVA with Fisher's LSD test as a multiple comparison tool alternatively, and survival time was evaluated by the Kaplan-Meier method. Results: The results of bilateral distant tumor model showed that the tumor growth rate and growth activity of both treated and distant tumors could be significantly inhibited with OK+pUSHT+NK combined therapy (p value<0.05) and the systemic anti-tumor effect seemed to be prolonged as well. H&E staining results implicated that the necrosis area appeared earlier after the combination treatment. IF staining results also showed a remarkable increase of NK cell infiltration in the central zone of tumors due to the OK+pUSHT+NK therapy. Survival rates significantly increased in both OK+pUSHT and OK+pUSHT+NK groups. In the rechallenging test, all the reimplanted tumors failed to form solid tumors as compared with the control group due to an effective long-lasting anti-tumor immune response which was induced by the combinational treatment. Conclusion: Combining ultrasound hyperthermia and multiple immunotherapies could lead immune system toward an anti-tumor regulation to overcome an immunosuppressive milieu of tumors. This combined approach has a potential to play an important role in the future cancer treatment of solid malignancy to improve the overall therapeutic benefit. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:50:20Z (GMT). No. of bitstreams: 1 ntu-105-R03548008-1.pdf: 4010059 bytes, checksum: 2b4ed1b7e80f99182d46750da6f94d07 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要(Abstract) iv 縮寫與翻譯對照表 vi 目錄 vii 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1 腫瘤 1 1.1.1 腫瘤免疫抑制微環境 1 1.1.2 腫瘤預後與免疫浸潤 1 1.2 超音波熱治療 2 1.2.1 超音波熱效應 2 1.2.2 超音波機械效應 4 1.2.3 超音波熱治療引發之抗癌免疫反應 5 1.3 OK-432免疫刺激劑 7 1.4 過繼性自然殺手細胞轉移療法(ACT-NK) 7 1.5 研究目的 10 第二章 實驗材料與方法 11 2.1 細胞株與小鼠品系 11 2.2 OK-432溶血性鏈球菌凍乾製劑 11 2.3 NK細胞擴增與培養 12 2.4 NK細胞之胞殺性測試 13 2.5 MTT細胞存活率分析─OK-432+pUSHT 15 2.6 超音波熱治療系統與儀器設置 16 2.7 熱電耦溫度測試 17 2.8 脈衝式超音波熱治療(pUSHT)參數設定 18 2.9 動物實驗 19 2.9.1 雙側遠端腫瘤模式(bilateral distant tumor model) 20 2.9.2 再刺激腫瘤模式(rechallenge tumor model) 21 2.10 存活率分析 22 2.11 腫瘤組織切片 23 2.12 數值統計及分析 23 第三章 實驗結果 24 3.1 NK細胞體外擴增最適條件 24 3.2 NK細胞胞殺性測試 27 3.3 MTT細胞存活率分析─OK-432+pUSHT 28 3.4 熱電耦溫升測試 29 3.5 動物實驗 31 3.5.1 雙側遠端腫瘤模式(bilateral distant tumor model) 31 3.5.1.1 OK-432+pUSHT合併治療於雙側遠端腫瘤模式 31 3.5.1.2 OK-432+pUSHT+NK合併治療於雙側遠端腫瘤模式 37 3.5.2 再刺激腫瘤模式(rechallenge tumor model) 45 第四章 討論 48 第五章 結論 53 第六章 參考文獻 54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超音波熱治療 | zh_TW |
| dc.subject | OK-432免疫刺激劑 | zh_TW |
| dc.subject | 過繼性自然殺手細胞轉移療法 | zh_TW |
| dc.subject | 抗癌免疫反應 | zh_TW |
| dc.subject | 超音波熱治療 | zh_TW |
| dc.subject | OK-432免疫刺激劑 | zh_TW |
| dc.subject | 過繼性自然殺手細胞轉移療法 | zh_TW |
| dc.subject | 抗癌免疫反應 | zh_TW |
| dc.subject | immunostimulant OK-432 | en |
| dc.subject | ultrasound hyperthermia | en |
| dc.subject | immunostimulant OK-432 | en |
| dc.subject | adoptive NK cell transfer therapy | en |
| dc.subject | antitumor immune response | en |
| dc.subject | ultrasound hyperthermia | en |
| dc.subject | adoptive NK cell transfer therapy | en |
| dc.subject | antitumor immune response | en |
| dc.title | 應用免疫刺激劑與自然殺手細胞來強化超音波治療所引發的抗癌免疫反應 | zh_TW |
| dc.title | Cancer Treatment Enhancement by Immunostimulant and NK Cell Transfer for Therapeutic Ultrasound-Induced Antitumor Immune Response | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 繆希椿(Shi-Chuen Miaw) | |
| dc.contributor.oralexamcommittee | 謝銘鈞(Ming-Jium Shieh),張富雄(Fu-Hsiung Chang) | |
| dc.subject.keyword | 超音波熱治療,OK-432免疫刺激劑,過繼性自然殺手細胞轉移療法,抗癌免疫反應, | zh_TW |
| dc.subject.keyword | ultrasound hyperthermia,immunostimulant OK-432,adoptive NK cell transfer therapy,antitumor immune response, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201601147 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
