Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50640Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 戴桓青(Hwan-Ching Tai) | |
| dc.contributor.author | Yu-Hsuan Liu | en |
| dc.contributor.author | 劉又瑄 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:50:10Z | - |
| dc.date.available | 2016-08-03 | |
| dc.date.copyright | 2016-08-03 | |
| dc.date.issued | 2015 | |
| dc.date.submitted | 2016-07-20 | |
| dc.identifier.citation | 1. Grune, T., Shringarpure, R., Sitte, N., and Davies, K. (2001). Age-related changes in protein oxidation and proteolysis in mammalian cells. J. Gerontol. A, Biol. Sci. Med. Sci. 56, 459-467.
2. Martinez, A., Portero-Otin, M., Pamplona, R., and Ferrer, I. (2010). Protein targets of oxidative damage in human neurodegenerative diseases with abnormal protein aggregates. Brain Pathol. 20, 281-297. 3. Levine, R.L., and Stadtman, E.R. (2001). Oxidative modification of proteins during aging. Exp. Gerontol. 36, 1495-1502. 4. Stadtman, E.R. (2006). Protein oxidation and aging. Free Radic. Res. 40, 1250-1258. 5. Lanciano, P., Khalfaoui-Hassani, B., Selamoglu, N., Ghelli, A., Rugolo, M., and Daldal, F. (2013). Molecular mechanisms of superoxide production by complex III: A bacterial versus human mitochondrial comparative case study. Biochim. Biophys. Acta 1827, 1332-1339. 6. Lee, J., Koo, N., and Min, D.B. (2004). Reactive Oxygen Species, Aging, and Antioxidative Nutraceuticals. Compr. Rev. Food Sci. F. 3, 21-33. 7. Chance, B., and Hollunger, G. (1960). Energy-Linked Reduction of Mitochondrial Pyridine Nucleotide. Nature 185, 666-672. 8. Hansford, R.G., Hogue, B.A., and Mildaziene, V. (1997). Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J. Bioenerg. Biomembr. 29, 89-95. 9. Vasquez-Vivar, J., Kalyanaraman, B., and Kennedy, M.C. (2000). Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigation. J. Biol. Chem. 275, 14064-14069. 10. Abreu, I.A., and Cabelli, D.E. (2010). Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochim. Biophys. Acta 1804, 263-274. 11. Fransen, M., Nordgren, M., Wang, B., and Apanasets, O. (2012). Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochim. Biophys. Acta, Mol. Basis Dis. 1822, 1363-1373. 12. Gill, S.S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909-930. 13. Ray, P.D., Huang, B.W., and Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signalling 24, 981-990. 14. Nelson, D.L., Nelson, D.L., Lehninger, A.L., and Cox, M.M. (2008). Lehninger principles of biochemistry, 5th ed. (New York: W.H. Freeman), pp. 708-772. 15. Garrison, W.M. (1987). Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Rev. 87, 381-398. 16. Uchida, K. (2003). 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog. Lipid Res. 42, 318-343. 17. Burcham, P.C., and Kuhan, Y.T. (1996). Introduction of carbonyl groups into proteins by the lipid peroxidation product, malondialdehyde. Biochem. Biophys. Res. Commun. 220, 996-1001. 18. Tilley, K.A., Benjamin, R.E., Bagorogoza, K.E., Okot-Kotber, B.M., Prakash, O., and Kwen, H. (2001). Tyrosine cross-links: molecular basis of gluten structure and function. J. Agric. Food Chem. 49, 2627-2632. 19. Boschi-Muller, S., Gand, A., and Branlant, G. (2008). The methionine sulfoxide reductases: Catalysis and substrate specificities. Arch. Biochem. Biophys. 474, 266-273. 20. Pastore, A., and Piemonte, F. (2012). S-Glutathionylation signaling in cell biology: progress and prospects. Eur. J. Pharm. Sci. 46, 279-292. 21. Jeong, W., Bae, S.H., Toledano, M.B., and Rhee, S.G. (2012). Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression. Free Radic. Biol. Med. 53, 447-456. 22. Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., and Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 329, 23-38. 23. Jung, T., Engels, M., Kaiser, B., Poppek, D., and Grune, T. (2006). Intracellular distribution of oxidized proteins and proteasome in HT22 cells during oxidative stress. Free Radic. Biol. Med. 40, 1303-1312. 24. Jung, T., Hohn, A., Catalgol, B., and Grune, T. (2009). Age-related differences in oxidative protein-damage in young and senescent fibroblasts. Arch. Biochem. Biophys. 483, 127-135. 25. Muller, F.L., Lustgarten, M.S., Jang, Y., Richardson, A., and Van Remmen, H. (2007). Trends in oxidative aging theories. Free Radic. Biol. Med. 43, 477-503. 26. Kuznetsova, A.A., Kuznetsov, N.A., Ishchenko, A.A., Saparbaev, M.K., and Fedorova, O.S. (2014). Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase. Biochim. Biophys. Acta 1840, 387-395. 27. Hohn, A., Konig, J., and Grune, T. (2013). Protein oxidation in aging and the removal of oxidized proteins. J. Proteomics 92, 132-159. 28. Lipinski, B. (2011). Hydroxyl Radical and Its Scavengers in Health and Disease. Oxid. Med. Cell. Longev. 2011. 29. Sultana, R., Perluigi, M., and Butterfield, D.A. (2009). Oxidatively modified proteins in Alzheimer's disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol. 118, 131-150. 30. Choi, J., Levey, A.I., Weintraub, S.T., Rees, H.D., Gearing, M., Chin, L.S., and Li, L. (2004). Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. J. Biol. Chem. 279, 13256-13264. 31. Dalfo, E., Portero-Otin, M., Ayala, V., Martinez, A., Pamplona, R., and Ferrer, I. (2005). Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J. Neuropathol. Exp. Neurol. 64, 816-830. 32. Perluigi, M., Poon, H.F., Maragos, W., Pierce, W.M., Klein, J.B., Calabrese, V., Cini, C., De Marco, C., and Butterfield, D.A. (2005). Proteomic analysis of protein expression and oxidative modification in R6/2 transgenic mice: a model of Huntington disease. Mol. Cell. Proteomics 4, 1849-1861. 33. Patnaik, P. (2003). Handbook of inorganic chemicals, (New York: McGraw-Hill). 34. Tainer, J.A., Roberts, V.A., and Getzoff, E.D. (1991). Metal-binding sites in proteins. Curr. Opin. Biotechnol 2, 582-591. 35. Regan, L. (1993). The design of metal-binding sites in proteins. Annu. Rev. Biophys. Biomol. Struct. 22, 257-287. 36. Hengen, P. (1995). Purification of His-Tag fusion proteins from Escherichia coli. Trends Biochem. Sci. 20, 285-286. 37. Miller, A.F. (2004). Superoxide dismutases: active sites that save, but a protein that kills. Curr. Opin. Chem. Biol. 8, 162-168. 38. Moller, I.M., Rogowska-Wrzesinska, A., and Rao, R.S. (2011). Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. J. Proteomics. 74, 2228-2242. 39. Uchida, K., and Kawakishi, S. (1989). Ascorbate-mediated specific oxidation of the imidazole ring in a histidine derivative. Bioorg. Chem. 17, 330-343. 40. Schoneich, C. (2000). Mechanisms of metal-catalyzed oxidation of histidine to 2-oxo-histidine in peptides and proteins. J. Pharm. Biomed. Anal. 21, 1093-1097. 41. Sies, H. (1993). Strategies of antioxidant defense. Eur. J. Biochem. 215, 213-219. 42. Khossravi, M., and Borchardt, R.T. (2000). Chemical pathways of peptide degradation. X: effect of metal-catalyzed oxidation on the solution structure of a histidine-containing peptide fragment of human relaxin. Pharm. Res. 17, 851-858. 43. Lewisch, S.A., and Levine, R.L. (1995). Determination of 2-oxohistidine by amino acid analysis. Anal. Biochem. 231, 440-446. 44. Uchida, K., and Kawakishi, S. (1994). Identification of oxidized histidine generated at the active site of Cu,Zn-superoxide dismutase exposed to H2O2. Selective generation of 2-oxo-histidine at the histidine 118. J. Biol. Chem. 269, 2405-2410. 45. Atwood, C.S., Huang, X., Khatri, A., Scarpa, R.C., Kim, Y.S., Moir, R.D., Tanzi, R.E., Roher, A.E., and Bush, A.I. (2000). Copper catalyzed oxidation of Alzheimer A beta. Cell. Mol. Biol. 46, 777-783. 46. Schoneich, C., and Williams, T.D. (2002). Cu(II)-catalyzed oxidation of beta-amyloid peptide targets His(13) and His(14) over His(6): Detection of 2-Oxo-histidine by HPLC-MS/MS. Chem. Res. Toxicol. 15, 717-722. 47. Sayre, L.M., Perry, G., Harris, P.L., Liu, Y., Schubert, K.A., and Smith, M.A. (2000). In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: A central role for bound transition metals. J. Neurochem. 74, 270-279. 48. Curtain, C.C., Ali, F., Volitakis, I., Cherny, R.A., Norton, R.S., Beyreuther, K., Barrow, C.J., Masters, C.L., Bush, A.I., and Barnham, K.J. (2001). Alzheimer's disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276, 20466-20473. 49. Tougu, V., Karafin, A., and Palumaa, P. (2008). Binding of zinc(II) and copper(II) to the full-length Alzheimer's amyloid-beta peptide. J. Neurochem. 104, 1249-1259. 50. John, J.P., Pollak, A., and Lubec, G. (2009). Complete sequencing and oxidative modification of manganese superoxide dismutase in medulloblastoma cells. Electrophoresis 30, 3006-3016. 51. Lee, J.W., and Helmann, J.D. (2006). The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440, 363-367. 52. Traore, D.A., El Ghazouani, A., Jacquamet, L., Borel, F., Ferrer, J.L., Lascoux, D., Ravanat, J.L., Jaquinod, M., Blondin, G., Caux-Thang, C., et al. (2009). Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein. Nat. Chem. Biol. 5, 53-59. 53. Le Floc'h, N., and Seve, B. (2007). Biological roles of tryptophan and its metabolism: Potential implications for pig feeding. Livest. Sci. 112, 23-32. 54. Andersen, O.S., Greathouse, D.V., Providence, L.L., Becker, M.D., and Koeppe, R.E. (1998). Importance of Tryptophan Dipoles for Protein Function: 5-Fluorination of Tryptophans in Gramicidin A Channels. J. Am. Chem. Soc. 120, 5142-5146. 55. Chaudhuri, A., Haldar, S., Sun, H., Koeppe Ii, R.E., and Chattopadhyay, A. (2014). Importance of indole NH hydrogen bonding in the organization and dynamics of gramicidin channels. Biochim. Biophys. Acta, Biomembr. 1838, 419-428. 56. de Jesus, A.J., and Allen, T.W. (2013). The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch. Biochim. Biophys. Acta 1828, 864-876. 57. Colletier, J.P., Fournier, D., Greenblatt, H.M., Stojan, J., Sussman, J.L., Zaccai, G., Silman, I., and Weik, M. (2006). Structural insights into substrate traffic and inhibition in acetylcholinesterase. EMBO J. 25, 2746-2756. 58. Harel, M., Schalk, I., Ehret-Sabatier, L., Bouet, F., Goeldner, M., Hirth, C., Axelsen, P.H., Silman, I., and Sussman, J.L. (1993). Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. U.S.A. 90, 9031-9035. 59. Keszthelyi, D., Troost, F.J., and Masclee, A.A.M. (2009). Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroent. Motil. 21, 1239-1249. 60. Moffett, J.R., and Namboodiri, M.A. (2003). Tryptophan and the immune response. Immunol. Cell. Biol. 81, 247-265. 61. Stone, T.W., and Darlington, L.G. (2002). Endogenous kynurenines as targets for drug discovery and development. Nat. Rev. Drug Discovery 1, 609-620. 62. Davies, M.J., and Truscott, R.J. (2001). Photo-oxidation of proteins and its role in cataractogenesis. J. Photochem. Photobiol., B 63, 114-125. 63. DeRosa, M.C., and Crutchley, R.J. (2002). Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233–234, 351-371. 64. Gracanin, M., Hawkins, C.L., Pattison, D.I., and Davies, M.J. (2009). Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products. Free Radical Biol. Med. 47, 92-102. 65. Ronsein, G.E., Oliveira, M.C.B., Miyamoto, S., Medeiros, M.H.G., and Di Mascio, P. (2008). Tryptophan Oxidation by Singlet Molecular Oxygen [O2 ( 1Δ g)]: Mechanistic Studies Using 18O-Labeled Hydroperoxides, Mass Spectrometry, and Light Emission Measurements. Chem. Res. Toxicol. 21, 1271-1283. 66. Zhang, H., Joseph, J., Crow, J., and Kalyanaraman, B. (2004). Mass spectral evidence for carbonate-anion-radical-induced posttranslational modification of tryptophan to kynurenine in human Cu, Zn superoxide dismutase. Free Radic. Biol. Med. 37, 2018-2026. 67. Moroni, F. (1999). Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur. J. Pharmacol. 375, 87-100. 68. Opitz, C.A., Wick, W., Steinman, L., and Platten, M. (2007). Tryptophan degradation in autoimmune diseases. Cell. Mol. Life Sci. 64, 2542-2563. 69. Della Chiesa, M., Carlomagno, S., Frumento, G., Balsamo, M., Cantoni, C., Conte, R., Moretta, L., Moretta, A., and Vitale, M. (2006). The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 108, 4118-4125. 70. Frumento, G., Rotondo, R., Tonetti, M., Damonte, G., Benatti, U., and Ferrara, G.B. (2002). Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med. 196, 459-468. 71. Platten, M., Wick, W., and Van den Eynde, B.J. (2012). Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer. Res. 72, 5435-5440. 72. Mezrich, J.D., Fechner, J.H., Zhang, X., Johnson, B.P., Burlingham, W.J., and Bradfield, C.A. (2010). An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190-3198. 73. Vidal, C.J. (2010). Post-Translational Modifications in Health and Disease, (New York: Springer). 74. Dreaden, T.M., Chen, J., Rexroth, S., and Barry, B.A. (2011). N-formylkynurenine as a marker of high light stress in photosynthesis. J. Biol. Chem. 286, 22632-22641. 75. Ehrenshaft, M., Silva, S.O., Perdivara, I., Bilski, P., Sik, R.H., Chignell, C.F., Tomer, K.B., and Mason, R.P. (2009). Immunological detection of N-formylkynurenine in oxidized proteins. Free Radical Biol. Med. 46, 1260-1266. 76. Staniszewska, M., and Nagaraj, R.H. (2007). Detection of kynurenine modifications in proteins using a monoclonal antibody. J. Immunol. Methods. 324, 63-73. 77. Davies, M.J. (2003). Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 305, 761-770. 78. Chen, H.H., Chen, C.Y., Chow, L.P., Chen, C.H., Lee, Y.T., Smith, C.V., and Yang, C.Y. (2011). Iron-catalyzed oxidation of Trp residues in low-density lipoprotein. Biol. Chem. 392, 859-867. 79. Triquigneaux, M.M., Ehrenshaft, M., Roth, E., Silman, I., Ashani, Y., Mason, R.P., Weiner, L., and Deterding, L.J. (2012). Targeted oxidation of Torpedo californica acetylcholinesterase by singlet oxygen: identification of N-formylkynurenine tryptophan derivatives within the active-site gorge of its complex with the photosensitizer methylene blue. Biochem. J. 448, 83-91. 80. Zhang, H., Andrekopoulos, C., Joseph, J., Crow, J., and Kalyanaraman, B. (2004). The carbonate radical anion-induced covalent aggregation of human copper, zinc superoxide dismutase, and alpha-synuclein: intermediacy of tryptophan- and tyrosine-derived oxidation products. Free Radical Biol. Med. 36, 1355-1365. 81. Rexroth, S., Poetsch, A., Rögner, M., Hamann, A., Werner, A., Osiewacz, H.D., Schäfer, E.R., Seelert, H., and Dencher, N.A. (2012). Reactive oxygen species target specific tryptophan site in the mitochondrial ATP synthase. Biochim. Biophys. Acta, Bioenerg. 1817, 381-387. 82. Anderson, L.B., Maderia, M., Ouellette, A.J.A., Putnam-Evans, C., Higgins, L., Krick, T., MacCoss, M.J., Lim, H., Yates, J.R., and Barry, B.A. (2002). Posttranslational modifications in the CP43 subunit of photosystem II. Proc. Natl. Acad. Sci. U.S.A. 99, 14676-14681. 83. Helland, R., Fjellbirkeland, A., Karlsen, O.A., Ve, T., Lillehaug, J.R., and Jensen, H.B. (2008). An oxidized tryptophan facilitates copper binding in Methylococcus capsulatus-secreted protein MopE. J. Biol. Chem. 283, 13897-13904. 84. Uzoma, I., and Zhu, H. (2013). Interactome Mapping: Using Protein Microarray Technology to Reconstruct Diverse Protein Networks. Genomics Proteomics Bioinformatics 11, 18-28. 85. Kretschy, N., and Somoza, M.M. (2014). Comparison of the Sequence-Dependent Fluorescence of the Cyanine Dyes Cy3, Cy5, DyLight DY547 and DyLight DY647 on Single-Stranded DNA. PLoS ONE 9, e85605. 86. Chandra, H., Reddy, P.J., and Srivastava, S. (2011). Protein microarrays and novel detection platforms. Expert Rev. Proteomic. 8, 61-79. 87. Huang, C.-F., Liu, Y.-H., and Tai, H.-C. (2015). Synthesis of peptides containing 2-oxohistidine residues and their characterization by liquid chromatography-tandem mass spectrometry. J. Pept. Sci. 21, 114-119. 88. Kamps, M.P. (1991). Generation and use of anti-phosphotyrosine antibodies for immunoblotting. Methods Enzymol. 201, 101-110. 89. Fedorova, M., Todorovsky, T., Kuleva, N., and Hoffmann, R. (2010). Quantitative evaluation of tryptophan oxidation in actin and troponin I from skeletal muscles using a rat model of acute oxidative stress. PROTEOMICS 10, 2692-2700. 90. Posadaz, A., Biasutti, A., Casale, C., Sanz, J., Amat-Guerri, F., and Garcia, N.A. (2004). Rose Bengal-sensitized photooxidation of the dipeptides L-tryptophyl-L-phenylalanine, L-tryptophyl-L-tyrosine and L-tryptophyl-L-tryptophan: kinetics, mechanism and photoproducts. Photochem. Photobiol. 80, 132-138. 91. Pakotiprapha, D., Samuels, M., Shen, K., Hu, J.H., and Jeruzalmi, D. (2012). Structure and mechanism of the UvrA–UvrB DNA damage sensor. Nat. Struct. Mol. Biol. 19, 291-298. 92. Truglio, J.J., Croteau, D.L., Van Houten, B., and Kisker, C. (2006). Prokaryotic nucleotide excision repair: the UvrABC system. Chem. Rev. 106, 233-252. 93. Fujimoto, J.G., and Farkas, D. (2009). Biomedical Optical Imaging, (New York: Oxford University Press) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50640 | - |
| dc.description.abstract | 活性氧化物質造成的蛋白質氧化常和老化及神經退化疾病作關聯。蛋白質中,能和金屬離子螯合的組胺酸是常見的氧化傷害標的物。而具有顯著發色特性的色胺酸,可經由光游離作用產生自由基,最後造成氧化傷害。近期研究中發現,2-氧基組胺酸與犬尿胺酸分別是組胺酸和色胺酸主要的氧化產物,並且有潛力作為蛋白質氧化受損的生物標記物。但它們的生物物理及生化特性都尚未被透徹了解。
我們發展了能有效地在合成的多肽上產生2-氧基組胺酸和犬尿胺酸的方法。在二價銅離子/抗壞血酸鈉/氧氣的金屬催化氧化系統中,我們調整了試劑的比例與反應的緩衝溶液系統,使產生2-氧基組胺酸的反應產率較文獻報導增加了十倍以上。而藉由孟加拉玫紅為光敏劑的光氧化反應,含色胺酸的多肽被完全氧化,且主要產物為犬尿胺酸多肽。這些方法讓我們能分離出完全氧化的含2-氧基組胺酸短肽與含犬尿胺酸多肽,以鑑定其性質。 組胺酸被氧化成2-氧基組胺酸的結構轉變,使得其在液相層析法的分析中,在碳-18的管柱的滯留時間較長。然而色胺酸的結構轉變,則帶來相反的變化,滯留時間較原先更短。兩者的結構在電噴灑串聯式質譜實驗中展現高度的穩定性。因此針對2-氧基組胺酸和犬尿胺酸做蛋白質體的質譜分析是可行的,我們氧化方法所合成的2-氧基組胺酸和犬尿胺酸多肽可以作為這類質譜實驗的標準品。 為了瞭解2-氧基組胺酸和犬尿胺酸殘基和其他細胞內因子可能的交互作用,我們將合成的多肽接上螢光染料。利用細胞蛋白質體微陣列晶片 ,和我們合成的探針作用,試圖尋找潛在的結合因子。為了後續蛋白質的修復或降解,細胞內可能會有能夠辨識這些氧化殘基的因子,我們的目標就是鑑定這些細胞因子,試圖了解細胞對蛋白質品質調控的機制。 | zh_TW |
| dc.description.abstract | Protein oxidation by reactive oxygen species has been associated with aging and neurodegenerative disorders. Histidine is a major target for metal-catalyzed oxidation due to its metal chelating property. Tryptophan can undergo photoionization due to its significant chromophoric characteristics, yielding both excited state species and radicals and then resulting in oxidative damage. 2-Oxohistidine and kynurenine, the major products of histidine and tryptophan oxidation, respectively, have been recently identified as markers of oxidative damage in biological systems, but their biophysical and biochemical properties are understudied.
We developed efficient methods to generate 2-oxohistidine and kynurenine side chains, from both monomers and peptides. For 2-oxohistidine, by optimizing reagent ratios and buffering condition in Cu2+/ascorbate/O2 reaction system, we improved the yield more than 10 fold compared to reported conditions. For kynurenine, via Rose Bengal-sensitized photooxidation, the tryptophan-containing peptide is completely oxidized, yielding kynurenine-containing peptide as major product. These methods allowed us to obtain homogeneously modified 2-oxohistidine and kynurenine peptides for further characterization. Conversion of histidine to 2-oxohistidine increased retention time in reverse-phase liquid chromatography; conversion of tryptophan to kynurenine had the opposite effect. Both oxidation products showed general stability in LC-MS/MS experiments as they underwent electrospray ionization and collision-induced dissociation. It should be feasible to analyze 2-oxohistidine-modified and kynurenine-modified proteome in large scale with shotgun protein mass spectrometry. The 2-oxohistidine-containing and kynurenine-containing peptides were conjugated with DyLight fluorophores to make probes for protein microarray analysis against E.coli proteomes. Our goal is to identify cellular proteins that potentially interact with oxidized peptides. These cellular factors may have the potential to recognize oxidized proteins and send them to degradation pathways. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:50:10Z (GMT). No. of bitstreams: 1 ntu-104-R02223213-1.pdf: 3604313 bytes, checksum: 32175635ecaf30fb775a6c611f11508f (MD5) Previous issue date: 2015 | en |
| dc.description.tableofcontents | 第1章、 緒論 1
1.1 研究目標 1 1.2 活性氧化物種…………….. 1 1.3 蛋白質氧化 3 1.4 老化與疾病的自由基理論 9 1.5 組胺酸的生物功能 10 1.6 組胺酸的金屬催化氧化反應 11 1.7 2-氧基組胺酸的生物研究 13 1.8 色胺酸的生物功能 14 1.9 單線態氧對色胺酸的氧化 16 1.10 犬尿胺酸的生物研究 18 1.11 微陣列蛋白質晶片 20 第2章、 結果與討論 22 2.1 多肽中組胺酸殘基的氧化 22 2.1.1 含組胺酸多肽的序列設計 22 2.1.2 反應條件與液相層析質譜分析 22 2.1.3 利用液相層析串聯式質譜儀鑑定含組胺酸多肽的氧化位置 25 2.2 多肽中色胺酸殘基的氧化 28 2.2.1 含色胺酸多肽的序列設計 28 2.2.2 反應條件與液相層析質譜分析 28 2.2.3 利用液相層析串聯式質譜儀鑑定含色胺酸多肽的氧化位置 34 2.3 以微陣列蛋白質晶片分析氧化多肽探針的互動蛋白質 38 2.3.1 合成多肽螢光探針 38 2.3.2 多肽探針與其互動蛋白質分析 41 第3章、 結論 45 3.1 氧化多肽的合成產率提升 45 3.2 初步的生物發現 45 第4章、 實驗材料與方法 47 4.1 實驗一般說明與儀器裝置 47 4.2 實驗方法 47 4.2.1 含組胺酸多肽的氧化 47 4.2.2 含色胺酸多肽的氧化 48 4.2.3 多肽與DyLight染料的接合 48 4.2.4 以LC-MS/MS鑑定多肽的實驗方法 49 4.2.5 微陣列蛋白質晶片實驗與數據處理 50 附錄 51 參考文獻 57 | |
| dc.language.iso | zh-TW | |
| dc.subject | 活性氧化物質 | zh_TW |
| dc.subject | 犬尿胺酸 | zh_TW |
| dc.subject | 2-氧基組胺酸 | zh_TW |
| dc.subject | 活性氧化物質 | zh_TW |
| dc.subject | 金屬催化氧化 | zh_TW |
| dc.subject | 光游離 | zh_TW |
| dc.subject | 2-氧基組胺酸 | zh_TW |
| dc.subject | 蛋白質微陣列 | zh_TW |
| dc.subject | 蛋白質微陣列 | zh_TW |
| dc.subject | 光游離 | zh_TW |
| dc.subject | 金屬催化氧化 | zh_TW |
| dc.subject | 犬尿胺酸 | zh_TW |
| dc.subject | kynurenine | en |
| dc.subject | 2-oxohistidine | en |
| dc.subject | reactive oxygen species | en |
| dc.subject | metal-catalyzed oxidation | en |
| dc.subject | photooxidation | en |
| dc.subject | protein microarray | en |
| dc.subject | 2-oxohistidine | en |
| dc.subject | kynurenine | en |
| dc.subject | reactive oxygen species | en |
| dc.subject | metal-catalyzed oxidation | en |
| dc.subject | photooxidation | en |
| dc.subject | protein microarray | en |
| dc.title | 合成含2-氧基組胺酸與犬尿胺酸之多肽並鑑定與其交互作用之蛋白質 | zh_TW |
| dc.title | Synthesis of 2-oxohistidine- and kynurenine-containing peptides and identification of their interacting proteins | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳健生,王宗興 | |
| dc.subject.keyword | 2-氧基組胺酸,犬尿胺酸,活性氧化物質,金屬催化氧化,光游離,蛋白質微陣列, | zh_TW |
| dc.subject.keyword | 2-oxohistidine,kynurenine,reactive oxygen species,metal-catalyzed oxidation,photooxidation,protein microarray, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201600417 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| Appears in Collections: | 化學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-104-1.pdf Restricted Access | 3.52 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
