Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50628
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀熙
dc.contributor.authorShih-Pin Linen
dc.contributor.author林世斌zh_TW
dc.date.accessioned2021-06-15T12:49:35Z-
dc.date.available2019-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-07-21
dc.identifier.citation1. Aalbers, A. G., A. Doeksen, M. I. Van Berge Henegouwen and W. A. Bemelman (2010). 'Hand-assisted laparoscopic versus open approach in colorectal surgery: a systematic review.' Colorectal Dis 12(4): 287-295.
2. Ahn, S. C. and P. Schmidt (1995). 'Efficient estimation of models for dynamic panel data.' Journal of econometrics 68(1): 5-27.
3. American Society of Anesthesiologists Task Force on Acute Pain, M. (2012). 'Practice guidelines for acute pain management in the perioperative setting: an updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management.' Anesthesiology 116(2): 248-273.
4. Apfelbaum, J. L., C. Chen, S. S. Mehta and T. J. Gan (2003). 'Postoperative pain experience: results from a national survey suggest postoperative pain continues to be undermanaged.' Anesth Analg 97(2): 534-540.
5. Aubrun, F., N. Salvi, P. Coriat and B. Riou (2005). 'Sex- and age-related differences in morphine requirements for potoperative pain relief.' Anesthesiology 103(1): 156-160.
6. Auvil-Novak, S., R. Novak, M. Smolensky, M. Morris and J. Kwan (1990). 'Temporal variation in the self-administration of morphine sulfate via patient-controlled analgesia in postoperative gynecologic cancer patient.' Ann Rev Chronopharmacol 7: 253-256.
7. Baum, L. E. and T. Petrie (1966). 'Statistical inference for probabilistic functions of finite state Markov chains.' The annals of mathematical statistics: 1554-1563.
8. Bisgaard, T., B. Klarskov, J. Rosenberg and H. Kehlet (2001). 'Characteristics and prediction of early pain after laparoscopic cholecystectomy.' Pain 90(3): 261-269.
9. Bollish, S. J., C. L. Collins, D. M. Kirking and R. H. Bartlett (1985). 'Efficacy of patient-controlled versus conventional analgesia for postoperative pain.' Clin Pharm 4(1): 48-52.
10. Bond, S. R. (2002). 'Dynamic panel data models: a guide to micro data methods and practice.' Portuguese economic journal 1(2): 141-162.
11. Bonica, J. J. (1979). 'The need of a taxonomy.' Pain 6(3): 247-248.
12. Boscariol, R., I. Gilron and E. Orr (2007). 'Chronobiological characteristics of postoperative pain: diurnal variation of both static and dynamic pain and effects of analgesic therapy.' Can J Anaesth 54(9): 696-704.
13. Breivik, H., P. C. Borchgrevink, S. M. Allen, L. A. Rosseland, L. Romundstad, E. K. Hals, G. Kvarstein and A. Stubhaug (2008). 'Assessment of pain.' Br J Anaesth 101(1): 17-24.
14. Brokjaer, A., M. Kreilgaard, A. E. Olesen, U. S. Simonsson, L. L. Christrup, A. Dahan and A. M. Drewes (2015). 'Population pharmacokinetics of morphine and morphine-6-glucuronide following rectal administration--a dose escalation study.' Eur J Pharm Sci 68: 78-86.
15. Burns, J., N. Hodsman, T. McLintock, G. Gillies, G. Kenny and C. McArdle (1989). 'The influence of patient characteristics on the requirements for postoperative analgesia.' Anaesthesia 44(1): 2-6.
16. Cepeda, M. S. and D. B. Carr (2003). 'Women experience more pain and require more morphine than men to achieve a similar degree of analgesia.' Anesthesia & Analgesia 97(5): 1464-1468.
17. Chang, K. Y., C. Y. Dai, L. P. Ger, M. J. Fu, K. C. Wong, K. H. Chan and M. Y. Tsou (2006). 'Determinants of patient-controlled epidural analgesia requirements: a prospective analysis of 1753 patients.' Clin J Pain 22(9): 751-756.
18. Chang, K. Y., M. Y. Tsou, K. H. Chan, C. S. Sung and W. K. Chang (2006). 'Factors affecting patient-controlled analgesia requirements.' J Formos Med Assoc 105(11): 918-925.
19. Chao, P.-W., S.-P. Lin, M.-Y. Tsou, I.-T. Kuo and K.-Y. Chang (2015). 'Assessing the Impact of Renal Function on Trajectory of Intravenous Patient-controlled Analgesic Demands Over Time after Open and Laparoscopic Colorectal Surgery Using Latent Curve Analysis.' The Clinical journal of pain.
20. Chao, P. W., S. P. Lin, M. Y. Tsou, I. T. Kuo and K. Y. Chang (2015). 'Assessing the Impact of Renal Function on Trajectory of Intravenous Patient-controlled Analgesic Demands Over Time after Open and Laparoscopic Colorectal Surgery Using Latent Curve Analysis.' Clin J Pain.
21. Chen, C. D., M. F. Yen, W. M. Wang, J. M. Wong and T. H. Chen (2003). 'A case-cohort study for the disease natural history of adenoma-carcinoma and de novo carcinoma and surveillance of colon and rectum after polypectomy: implication for efficacy of colonoscopy.' Br J Cancer 88(12): 1866-1873.
22. Chen, T. H., H. S. Kuo, M. F. Yen, M. S. Lai, L. Tabar and S. W. Duffy (2000). 'Estimation of sojourn time in chronic disease screening without data on interval cases.' Biometrics 56(1): 167-172.
23. Chen, W., R. Maitra and V. Melnykov (2012). 'EMCluster: EM Algorithm for Model-Based Clustering of Finite Mixture Gaussian Distribution.' R Package, URL http://cran. rproject. org/package= EMCluster.
24. Cheung, C. W., C. L. Ying, L. H. Lee, S. F. Tsang, S. L. Tsui and M. G. Irwin (2009). 'An audit of postoperative intravenous patient-controlled analgesia with morphine: evolution over the last decade.' Eur J Pain 13(5): 464-471.
25. Chia, Y. Y., L. H. Chow, C. C. Hung, K. Liu, L. P. Ger and P. N. Wang (2002). 'Gender and pain upon movement are associated with the requirements for postoperative patient-controlled iv analgesia: a prospective survey of 2,298 Chinese patients.' Can J Anaesth 49(3): 249-255.
26. Chumbley, G. M., G. M. Hall and P. Salmon (1998). 'Patient-controlled analgesia: an assessment by 200 patients.' Anaesthesia 53(3): 216-221.
27. Chung, F., E. Ritchie and J. Su (1997). 'Postoperative pain in ambulatory surgery.' Anesth Analg 85(4): 808-816.
28. Cohen, L., R. T. Fouladi and J. Katz (2005). 'Preoperative coping strategies and distress predict postoperative pain and morphine consumption in women undergoing abdominal gynecologic surgery.' J Psychosom Res 58(2): 201-209.
29. Conesa, D., M. Martínez-Beneito, R. Amorós and A. López-Quílez (2015). 'Bayesian hierarchical Poisson models with a hidden Markov structure for the detection of influenza epidemic outbreaks.' Statistical methods in medical research 24(2): 206-223.
30. Consonni, V., D. Ballabio and R. Todeschini (2010). 'Evaluation of model predictive ability by external validation techniques.' Journal of chemometrics 24(3‐4): 194-201.
31. Cooper, B. and M. Lipsitch (2004). 'The analysis of hospital infection data using hidden Markov models.' Biostatistics 5(2): 223-237.
32. Cox, D. R. and H. D. Miller (1977). The theory of stochastic processes, CRC Press.
33. Dahmani, S., H. Dupont, J. Mantz, J. M. Desmonts and H. Keita (2001). 'Predictive factors of early morphine requirements in the post-anaesthesia care unit (PACU).' Br J Anaesth 87(3): 385-389.
34. De Cosmo, G., E. Congedo, C. Lai, P. Primieri, A. Dottarelli and P. Aceto (2008). 'Preoperative psychologic and demographic predictors of pain perception and tramadol consumption using intravenous patient-controlled analgesia.' Clin J Pain 24(5): 399-405.
35. De Kock, M. (2009). 'Expanding our horizons: transition of acute postoperative pain to persistent pain and establishment of chronic postsurgical pain services.' Anesthesiology 111(3): 461-463.
36. Eddy, S. R. (1996). 'Hidden markov models.' Current opinion in structural biology 6(3): 361-365.
37. Eddy, S. R. (2004). 'What is a hidden Markov model?' Nature biotechnology 22(10): 1315-1316.
38. Efron, B. (1998). 'RA Fisher in the 21st Century.' Statistical Science: 95-114.
39. Ernst, J. and M. Kellis (2010). 'Discovery and characterization of chromatin states for systematic annotation of the human genome.' Nature biotechnology 28(8): 817-825.
40. Evans, J. M., M. Rosen, J. MacCarthy and M. I. Hogg (1976). 'Apparatus for patient-controlled administration of intraenous narcotics during labour.' Lancet 1(7949): 17-18.
41. Ferrante, F. M., E. J. Orav, A. G. Rocco and J. Gallo (1988). 'A statistical model for pain in patient-controlled analgesia and conventional intramuscular opioid regimens.' Anesth Analg 67(5): 457-461.
42. Fletcher, D., C. Fermanian, A. Mardaye, P. Aegerter, Pain, A. Regional Anesthesia Committee of the French and S. Intensive Care (2008). 'A patient-based national survey on postoperative pain management in France reveals significant achievements and persistent challenges.' Pain 137(2): 441-451.
43. Forney Jr, G. D. (2005). 'The viterbi algorithm: A personal history.' arXiv preprint cs/0504020.
44. Gerbershagen, H. J., S. Aduckathil, A. J. van Wijck, L. M. Peelen, C. J. Kalkman and W. Meissner (2013). 'Pain intensity on the first day after surgery: a prospective cohort study comparing 179 surgical procedures.' Anesthesiology 118(4): 934-944.
45. Glasson, J. C., W. T. Sawyer, C. M. Lindley and B. Ginsberg (2002). 'Patient-specific factors affecting patient-controlled analgesia dosing.' J Pain Palliat Care Pharmacother 16(2): 5-21.
46. Gourlay, G. K., S. R. Kowalski, J. L. Plummer, M. J. Cousins and P. J. Armstrong (1988). 'Fentanyl blood concentration-analgesic response relationship in the treatment of postoperative pain.' Anesth Analg 67(4): 329-337.
47. Grass, J. A. (2005). 'Patient-controlled analgesia.' Anesth Analg 101(5 Suppl): S44-61.
48. Halawi, M. J., S. A. Grant and M. P. Bolognesi (2015). 'Multimodal Analgesia for Total Joint Arthroplasty.' Orthopedics 38(7): e616-625.
49. Hedeker, D. and R. D. Gibbons (1994). 'A random-effects ordinal regression model for multilevel analysis.' Biometrics: 933-944.
50. Hui-Min, W., Y. Ming-Fang and T. Hsiu-Hsi Chen (2004). 'SAS macro program for non-homogeneous Markov process in modeling multi-state disease progression.' Computer methods and programs in biomedicine 75(2): 95-105.
51. Ip, H. Y., A. Abrishami, P. W. Peng, J. Wong and F. Chung (2009). 'Predictors of postoperative pain and analgesic consumption: a qualitative systematic review.' Anesthesiology 111(3): 657-677.
52. Kalkman, C. J., K. Visser, J. Moen, G. J. Bonsel, D. E. Grobbee and K. G. Moons (2003). 'Preoperative prediction of severe postoperative pain.' Pain 105(3): 415-423.
53. Katz, J. and Z. Seltzer (2009). 'Transition from acute to chronic postsurgical pain: risk factors and protective factors.' Expert Rev Neurother 9(5): 723-744.
54. Kehlet, H., R. C. Wilkinson, H. B. Fischer, F. Camu and G. Prospect Working (2007). 'PROSPECT: evidence-based, procedure-specific postoperative pain management.' Best Pract Res Clin Anaesthesiol 21(1): 149-159.
55. Kirsch, B., H. Berdine, D. Zablotsky, G. Wenzel and C. Meyer (2000). 'Management strategy: identifying pain as the fifth vital sign.' Veterans Health System Journal 5: 49-59.
56. Lee, Y. C., A. M. Yen, J. J. Tai, S. H. Chang, J. T. Lin, H. M. Chiu, H. P. Wang, M. S. Wu and T. H. Chen (2009). 'The effect of metabolic risk factors on the natural course of gastro-oesophageal reflux disease.' Gut 58(2): 174-181.
57. Lehmann, K. (1991). 'Patient-controlled intravenous analgesia for postoperative pain relief.' Advances in pain research and therapy 18: 481-506.
58. Lin, S.-P., K.-Y. Chang, M.-Y. Tsou and T. Chen (2015). 'Serial Analgesic Consumptions and Predictors of Intravenous Patient-controlled Analgesia with Cluster Analysis.' The Clinical journal of pain.
59. Liu, C. Y., C. Y. Wu, J. T. Lin, Y. C. Lee, A. M. Yen and T. H. Chen (2006). 'Multistate and multifactorial progression of gastric cancer: results from community-based mass screening for gastric cancer.' J Med Screen 13 Suppl 1: S2-5.
60. Liu, S. S. and C. L. Wu (2007). 'The effect of analgesic technique on postoperative patient-reported outcomes including analgesia: a systematic review.' Anesth Analg 105(3): 789-808.
61. Lunn, D. J., A. Thomas, N. Best and D. Spiegelhalter (2000). 'WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility.' Statistics and computing 10(4): 325-337.
62. Macintyre, P. E. and D. A. Jarvis (1996). 'Age is the best predictor of postoperative morphine requirements.' Pain 64(2): 357-364.
63. Mamie, C., M. Bernstein, A. Morabia, C. Klopfenstein, D. Sloutskis and A. Forster (2004). 'Are there reliable predictors of postoperative pain?' Acta anaesthesiologica scandinavica 48(2): 234-242.
64. Mangoni, A. A. and S. H. Jackson (2004). 'Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications.' Br J Clin Pharmacol 57(1): 6-14.
65. Mangoni, A. A. and S. H. D. Jackson (2004). 'Age‐related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications.' British journal of clinical pharmacology 57(1): 6-14.
66. McCullagh, P. and J. A. Nelder (1989). Generalized linear models, CRC press.
67. McKeown, J. L. (2015). 'Pain Management Issues for the Geriatric Surgical Patient.' Anesthesiol Clin 33(3): 563-576.
68. McNicol, E. D., M. C. Ferguson and J. Hudcova (2015). 'Patient controlled opioid analgesia versus non-patient controlled opioid analgesia for postoperative pain.' Cochrane Database Syst Rev 6: CD003348.
69. Melnykov, V. and R. Maitra (2010). 'Finite mixture models and model-based clustering.' Statistics Surveys 4: 80-116.
70. Merskey H., B., N. (1994). Classification of chronic pain: descriptions of chronic pain syndromes and definition of pain terms. Seatle, Internaional Association for the Study of Pain Task Force on Taxonomy.
71. Momeni, M., M. Crucitti and M. De Kock (2006). 'Patient-controlled analgesia in the management of postoperative pain.' Drugs 66(18): 2321-2337.
72. Nelder, J. A. and R. Baker (1972). 'Generalized linear models.' Encyclopedia of Statistical Sciences.
73. Ozalp, G., R. Sarioglu, G. Tuncel, K. Aslan and N. Kadiogullari (2003). 'Preoperative emotional states in patients with breast cancer and postoperative pain.' Acta Anaesthesiol Scand 47(1): 26-29.
74. Pan, P. H., R. Coghill, T. T. Houle, M. H. Seid, W. M. Lindel, R. L. Parker, S. A. Washburn, L. Harris and J. C. Eisenach (2006). 'Multifactorial preoperative predictors for postcesarean section pain and analgesic requirement.' Anesthesiology 104(3): 417-425.
75. Phillips, D. M. (2000). 'JCAHO pain management standards are unveiled. Joint Commission on Accreditation of Healthcare Organizations.' JAMA 284(4): 428-429.
76. Pöllmann, L. and P. Harris (1977). 'Rhythmic changes in pain sensitivity in teeth.' International journal of chronobiology 5(3): 459-464.
77. Rabiner, L. R. (1989). 'A tutorial on hidden Markov models and selected applications in speech recognition.' Proceedings of the IEEE 77(2): 257-286.
78. Roe, B. B. (1963). 'Are Postoperative Narcotics Necessary?' Arch Surg 87: 912-915.
79. Sarton, E., E. Olofsen, R. Romberg, J. den Hartigh, B. Kest, D. Nieuwenhuijs, A. Burm, L. Teppema and A. Dahan (2000). 'Sex differences in morphine analgesia: an experimental study in healthy volunteers.' Anesthesiology 93(5): 1245-1254; discussion 1246A.
80. Scott, S. L. (2011). 'Bayesian methods for hidden Markov models.' Journal of the American Statistical Association.
81. Sechzer, P. H. (1968). 'Objective measurement of pain.' The Journal of the American Society of Anesthesiologists 29(1): 209-209.
82. SECHZER, P. H. (1971). 'Studies in pain with the analgesic-demand system.' Anesthesia & Analgesia 50(1): 1-10.
83. Sheffer, C. E., J. A. Deisinger, J. E. Cassisi and K. Lofland (2007). 'A revised taxonomy of patients with chronic pain.' Pain Med 8(4): 312-325.
84. Sheiner, E. K., E. Sheiner, I. Shoham-Vardi, M. Mazor and M. Katz (1999). 'Ethnic differences influence care giver's estimates of pain during labour.' Pain 81(3): 299-305.
85. Sommer, M., J. M. de Rijke, M. van Kleef, A. G. Kessels, M. L. Peters, J. W. Geurts, J. Patijn, H. F. Gramke and M. A. Marcus (2010). 'Predictors of acute postoperative pain after elective surgery.' Clin J Pain 26(2): 87-94.
86. Spiegelhalter, D. J., N. G. Best, B. P. Carlin and A. Linde (2014). 'The deviance information criterion: 12 years on.' Journal of the Royal Statistical Society: Series B (Statistical Methodology) 76(3): 485-493.
87. Spiegelhalter, D. J., N. G. Best, B. P. Carlin and A. Van Der Linde (2002). 'Bayesian measures of model complexity and fit.' Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64(4): 583-639.
88. Stratonovich, R. (1960). 'Conditional markov processes.' Theory of Probability & Its Applications 5(2): 156-178.
89. Strulov, L., E. Z. Zimmer, M. Granot, A. Tamir, P. Jakobi and L. Lowenstein (2007). 'Pain catastrophizing, response to experimental heat stimuli, and post-cesarean section pain.' J Pain 8(3): 273-279.
90. Taenzer, P., R. Melzack and M. E. Jeans (1986). 'Influence of psychological factors on postoperative pain, mood and analgesic requirements.' Pain 24(3): 331-342.
91. Taylor, N. M., G. M. Hall and P. Salmon (1996). 'Patients' experiences of patient-controlled analgesia.' Anaesthesia 51(6): 525-528.
92. Viterbi, A. (1967). 'Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.' IEEE transactions on Information Theory 13(2): 260-269.
93. Wall, M. M. and R. Li (2009). 'Multiple indicator hidden Markov model with an application to medical utilization data.' Stat Med 28(2): 293-310.
94. Watkins, R. E., S. Eagleson, B. Veenendaal, G. Wright and A. J. Plant (2009). 'Disease surveillance using a hidden Markov model.' BMC medical informatics and decision making 9(1): 39.
95. Wilder-Smith, O. H. (2005). 'Opioid use in the elderly.' Eur J Pain 9(2): 137-140.
96. Wilson, C. H., A. Sanni, D. A. Rix and N. A. Soomro (2011). 'Laparoscopic versus open nephrectomy for live kidney donors.' Cochrane Database Syst Rev(11): CD006124.
97. Witowski, V., R. Foraita, Y. Pitsiladis, I. Pigeot and N. Wirsik (2014). 'Using Hidden Markov Models to Improve Quantifying Physical Activity in Accelerometer Data–A Simulation Study.' PloS one 9(12): e114089.
98. Wu, C. L. and S. N. Raja (2011). 'Treatment of acute postoperative pain.' Lancet 377(9784): 2215-2225.
99. Wu, H., B. Caffo, H. A. Jaffee, R. A. Irizarry and A. P. Feinberg (2010). 'Redefining CpG islands using hidden Markov models.' Biostatistics 11(3): 499-514.
100. Yen, C. R., M. Y. Tsou, M. S. Mandell, C. T. Chan, K. H. Chan, T. H. Chen and K. Y. Chang (2010). 'An analysis of patient variables that influence intravenous patient-controlled analgesic use of morphine with quantile regression.' Anesthesiology 112(3): 688-695.
101. 許郁雯 (2008). '拉普拉斯轉換應用於多階段隨機模式: 以高血壓及大腸直腸癌疾病病程為例.' 臺灣大學流行病學研究所學位論文: 1-106.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50628-
dc.description.abstract研究背景:
雖然對於疼痛的了解一直在進步,如何有效的管理手術引起的急性疼痛一直是醫護人員所關注的議題。經過調查大部分手術後的病患沒有得到適當的止痛,大約只有四分之一的病患得到適當的止痛。如何改善手術的止痛服務,因為病人和病人本身在不同時間點上,對於止痛藥物劑量需求存在著巨大的異質性,如何精準的使用止痛藥物劑量,正面臨一個巨大的挑戰。本研究利用一個常見且廣泛被臨床人員使用多年的止痛機器 – 靜脈病患自控式止痛器收集且分析病患在三天內的重複測量止痛藥物劑量,利用複雜的統計模型和隨機過程的分析病患動態的藥物使用劑量,改善手術後止痛的管理。
研究目標:
本論文第一階段的目標是使用隨機混和模型和動態追蹤資料模型分析,這兩個模型同時考慮了重複測量的特性以及加入影響因子的分析,可以根據不同手術與不同時間,發展客製化止痛藥物劑量。接下來利用多階段馬可夫模型討論止痛藥物劑量在不同階段的轉移使否被危險因子所影響。最後,使用了隱馬可夫模型發展出個人化的止痛藥物監測系統,期望在不同時間點監測並且預測不同的麻醉需求階段。期望能精準的使用止痛藥物劑量,並且能提高病患止痛的品質,減少副作用的產生。
材料與方法:
本研究為回溯性觀察實驗,在通過人體試驗後( IRB: 2011-03-037IC),收集了2005年到2010年共六年的資料,完整連續觀察三天止痛藥物劑量的變化加以分析。統計模型分為四個部分,首先利用貝式隨機截距項模型(Bayesian random intercept model)分析不同手術對於使用止痛藥物劑量的差異,發展針對不同手術使用不同使用劑量的止痛策略。其次拓展分析在不同時間的止痛藥劑量,利用貝式動態追蹤資料模型(Bayesian dynamic panel model)加入滯後變數(lagged variable)找出連續止痛藥劑量間的關係。第三部分,利用三階段馬可夫模型分析動態劑量階段(低、中、高劑量)間的轉移狀況,最後利用隱馬可夫(hidden Markov model)分析最佳的劑量階段數量,並且依據觀察個人的連續止痛劑量下找出最可能的隱藏劑量分類階段,達成個人化的醫療的目標。
結果:
手術間止痛藥物劑量的變異性極大,經過此模型估計不同手術間對於止痛藥物劑量的影響,已經可以發展出針對不同手術的止痛策略,在此模式下可以依據病患年齡、性別、體重、是否有癌症以及不同的手術達到客製化估計總止痛藥物的劑量。其次在動態追蹤資料模型中,分析了連續止痛藥物劑量之間的關係(0.477),利用此變數可以估計不同時間點的止痛藥物劑量。第三部分利用三階段馬可夫模型分析的三個劑量狀態的轉移速率。低到中、中到高的轉移機率分別是0.252和0.335,另外,高到中、中到低的轉移機率分別是0.600和0.359。結果顯示整體的力量是往低劑量移動,符合臨床的觀察。最後平衡的機率,分別是在低、中、高狀態依次為47.8% ,33.5% ,18.7%。在三階段隱馬可夫模型並且加入因子分析,發現三個族群的劑量(高、中、低需求階段下平均分別為12.36 、5.48、2.11mg的止痛劑量),經過手術後第72個小時結束後,低需求共有83.6%;高需求則在一開始很高,之後急速減少,最後在手術後第72小時,高和中度需求只剩2.0%和14.4%。最後根據隱馬可夫模型,我們可以藉由觀察連續的止痛藥物劑量偵測到隱藏狀態的最可能路徑。
討論:
利用統計模型分析可以提供麻醉從業人員有用的資訊,並且改善使用靜脈病患自控式止痛服務,根據不同的手術以及不同的麻醉藥物需求,提共更精確地止痛藥物劑量。在這些統計分析中,隱馬可夫模型提供了最強大的人工智慧學習,依據麻醉劑量分類出不同的止痛藥物需求階段,並且發展出客製化的動態止痛藥物規劃。同時隱馬可夫模型可以預測止痛藥物需求階段,找出最佳止痛藥物需求階段,以此為基礎發展出個人化的監測止痛藥物需求系統。
zh_TW
dc.description.abstractBackground:
Although the understanding of pain has progressed, managing postoperative pain remains a significant problem worldwide. Inadequate pain relief is common in postoperative patients, and only about one in four surgical patients have their pain adequately controlled. Unfortunately, to improve pain management for postoperative patients recorded by the popular and well-accepted pain management modality, intravenous patient controlled analgesia (IVPCA) is faced with the issue of heterogeneity (large between- and within-individual variations) and repeated measurements during the postoperative pain management that cannot be handled without using complex statistical models and stochastic processes.
Objectives:
My thesis first aimed to use random-effect and dynamic panel model, both taking into account the measured covariates and correlated data within patient, to develop client-oriented procedure-specific and dynamic regimen on analgesic consumption. And then to elucidate the kinetic movement between three different levels of analgesic consumption by using multi-state Markov model and finally to identify the underlying hidden state of analgesic need and their kinetic transitions to yield the observed analgesic consumption with hidden Markov model (HMM) in order to develop a surveillance system to detect the classified states governing analgesic consumption.
Material and methods:
This was a retrospective observational study approved by the Institutional Review Board of the Taipei Veterans General Hospital (IRB: 2011-03-037IC). The study subjects were collected between January 2005 and December 2010. The surgical patients using IVPCA immediately after operation and all equally observed for postoperative three days. Bayesian random intercept model was first used to estimate the influence of surgical effects on analgesic consumption and Bayesian dynamic panel model was then used to model the relationship between two consecutive observations with the incorporation of time lag variable. Three-state Markov model was used to analyse the dynamic process of analgesic consumptions. The hidden Markov model was further applied to identifying the optimal classified states (relaxing the assumption of three states) and to find the most likely hidden state path in the postoperative period given the observed time series data on analgesic consumptions.
Results:
The variation of analgesic consumption between surgeries was substantial. The IVPCA regimen formulation for surgical procedure was then developed from the random intercept model. The effect of lagged response variable was 0.477 between two consecutive observations by dynamic panel model. The further application was to predict the next analgesic consumption by the lagged observation. The estimated regression coefficients from Bayesian random-intercept model was used to predicting client-specific total morphine consumption with age, gender, cancer, weight, and surgical types.
In three-state Markov model, the estimated transition rates for low to medium and medium to high were 0.252 and 0.335 respectively, while transition rates for high to medium and medium to low were 0.600 and 0.359 respectively. The results showing the overall force toward the low analgesic consumption states match the clinical finding of downslope trend of analgesic consumption over time. The stationary distribution for low, medium and high states were 48.7%, 33.5% and 18.7%, respectively. The three-state (“High”, “Medium”, and “Low” analgesic need with the mean value 12.36, 5.48, 2.11 mg) hidden Markov model with the covariates indicated above was the parsimonious model. There were 50.6% of “High” analgesic need and 12.2 % of “Low” analgesic need in the first six-hour timeframe after operation. Low analgesic need state increases with time and accounted for 83.6% after postoperative 72 hours. “High” and “Medium” analgesic need state and decreases sharply after first six-hour and becomes 2.0% and 14.4% at the end of three days usage. Age, gender, cancer, weight, and surgery were identified as a set of significant predictors for various transitions using HMM. Through hidden Markov model, we are able to decode the best pathway of hidden states with Viterbi algorithm given a sequence of analgesic consumptions.
Conclusions:
The better use of statistical models enables anesthesiology to improve the IVPCA regimens to adapt various surgeries into patient-specific analgesic need in different postoperative periods. Among these statistical models, the hidden Markov model is the most powerful learning algorithm in classifying three distinct states on the consumption of analgesic consumption and developing client-oriented dynamic process of the analgesic consumption. The results of forecasting analgesic need, decoding the optimal pathways of the classified state, and predicting the evolution of the classified from the hidden Markov model used can be used as a surveillance system to detect the unusual states on analgesic consumption postoperatively.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:49:35Z (GMT). No. of bitstreams: 1
ntu-105-D00849008-1.pdf: 5578698 bytes, checksum: 1e63d6e0346b433265211203527953d8 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
CONTENTS viii
LIST OF TABLES xii
LIST OF FIGURES xv
Chapter 1 Introduction 1
1.1 Pain mechanism 1
1.2 Acute postoperative pain 2
1.3 Minimal effective analgesic concentration (MEAC) for acute pain 3
1.4 Patient-Controlled Analgesia (PCA) 3
1.5 Previous study for serial analgesic consumptions 4
1.6 Aims of the study 4
Chapter 2 Literature review on Patient-Controlled Analgesia 8
2.1 The Use of PCA 8
2.2 Predictors for analgesic consumptions 8
2.2.1 Surgical factor 9
2.2.2 Demographic factor 9
2.2.3 Psychological factor 10
2.2.4 Preoperative pain experience 11
2.2.5 Dynamics of analgesic consumption 11
2.3 Quantitative analysis of analgesic consumption 12
2.4 Cluster analysis for serial analgesic consumptions 12
2.5 Literature review of ICD-PCS 15
Chapter 3 Literature Review for Selected Statistical Methods for PCA Data 17
3.1 Generalized linear mixed models (GLMs) and Bayesian statistical algorithm 17
3.1.1 Generalized linear mixed models (GLMMs) 17
3.2 Dynamic panel models (DPMs) for panel data 19
3.2.1 Inference from Bayes formula 23
3.2.2 Methods to inference from Posterior Distribution 24
3.2.3 Metropolis sampling 25
3.2.4 Bayesian model fit and model comparison 26
3.3 Literature review for Multistate Model 27
3.3.1 Model Specification for three states Markov model 32
3.4 Literature review for hidden Markov model 35
3.4.1 HMM formulation 35
3.4.2 Bayesian Methods for Hidden Markov Models 41
3.4.3 Applications with HMM 47
Chapter 4 Study design, study subjects and data collections 59
4.1 Framework of the research 59
4.2 Study design 60
4.3 Dependent variable 61
4.4 Independent variable 62
4.5 Random intercept model for modelling procedure specialized effect 62
4.6 Analysis serial analgesic consumption by dynamic panel model (DPM) 65
4.7 Analysis the serial analgesic consumptions from three states Markov Model 66
4.7.1 Likelihood for observed data 68
4.8 Estimation of the three states Markov model 68
4.9 Analysis of hidden Markov model 70
4.9.1 Viterbi algorithm to find the most likely sequence of hidden state path 71
4.9.2 Expectation-Maximization cluster algorithm approach 71
4.9.3 Bayesian approach 72
4.9.4 Bayesian Hidden Markov Model with SAS MCMC Estimation 73
Chapter 5 Results 76
5.1 Description Data 76
5.2 Results of random effect model 76
5.3 Formulation of procedure specialized IVPCA regimens 78
5.4 Dynamic IVPC regimens 79
5.5 Results for three state Markov model 80
5.5.1 Results of three-state Markov model without covariates 80
5.5.2 Estimates the covariates of transition between three states 82
5.5.3 Sensitivity test for the effect of covariates 83
5.6 Estimated Results of hidden Markov model (HMM) 84
5.6.1 EM algorithm for poisson hidden Markov model with R program 84
5.6.2 Viterbi algorithm for finding the most likely state path for HMM 84
5.6.3 Results of EM cluster algorithm 85
5.6.4 Results of Bayesian method for hidden Markov model (HMM) with SAS MCMC program 85
Chapter 6 Discussions 88
6.1 Procedure specific effect 88
6.2 Dynamic panel model 90
6.3 Three-state Markov model 92
6.4 Modelling the analgesic need state with HMM 96
6.5 HMM with covariates 99
6.6 Methodological consideration 99
6.6.1 Comparison of the results between various multistate Markov model 99
6.6.2 Advantage of using HMM compared with other multistate Markov model 100
6.6.3 Decoding using Viterbi algorithm with covariates 100
6.7 Limitations 101
6.8 Conclusions 102
Appendix 103
Appendix 1 ICD-10 procedure code system 103
References 104
dc.language.isoen
dc.subject動態追蹤資料模型zh_TW
dc.subject病患自控式止痛zh_TW
dc.subject隨機截距模型zh_TW
dc.subject多階段馬可夫模型zh_TW
dc.subject隱馬可夫模型zh_TW
dc.subject病患自控式止痛zh_TW
dc.subject隨機截距模型zh_TW
dc.subject動態追蹤資料模型zh_TW
dc.subject多階段馬可夫模型zh_TW
dc.subject隱馬可夫模型zh_TW
dc.subjectRandom intercept modelen
dc.subjectPatient-controlled analgesiaen
dc.subjecthidden Markov modelen
dc.subjectMultistate Markov modelen
dc.subjectDynamic panel modelen
dc.subjectRandom intercept modelen
dc.subjecthidden Markov modelen
dc.subjectMultistate Markov modelen
dc.subjectDynamic panel modelen
dc.subjectPatient-controlled analgesiaen
dc.title病患自控式止痛的統計模型分析zh_TW
dc.titleStatistical Models for Analyzing Patient-Controlled Analgesiaen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee鄭宗記,鄧致剛,鄒美勇,陳立昇,潘信良
dc.subject.keyword病患自控式止痛,隨機截距模型,動態追蹤資料模型,多階段馬可夫模型,隱馬可夫模型,zh_TW
dc.subject.keywordPatient-controlled analgesia,Random intercept model,Dynamic panel model,Multistate Markov model,hidden Markov model,en
dc.relation.page198
dc.identifier.doi10.6342/NTU201601139
dc.rights.note有償授權
dc.date.accepted2016-07-21
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
5.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved