請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50620完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王翰聰(Hang-Tsung Wang) | |
| dc.contributor.author | Shih-Hua Lo | en |
| dc.contributor.author | 羅世樺 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:49:09Z | - |
| dc.date.available | 2020-08-21 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | 沈明來。2014。試驗設計學。第五版。九州圖書文物有限公司。臺北。 洪嘉謨、郭猛德。2001。豬糞尿處理與資源化。畜牧要覽養豬篇(增修版),第329頁。中國畜牧學會編印。華香園出版社,台北市。 洪嘉謨。1998。跨世紀養豬排泄廢棄資源處理技術。台灣省畜產試驗所,台南縣新化鎮。 Aarnink A. J. A., P. L. Dinh, N. W. M. Ogink, P. M. Becker, M. W. A. Verstegen. 2005. Odour from animal production facilities: its relationship to diet. Nutr. Res. Rev. 18:3-30. Adeola O. and M. R. Bedford. 2004. Exogenous dietary xylanase ameliorates viscosity-induced anti-nutritional effects in wheat-based diets for White Pekin ducks (Anas platyrinchos domesticus). Brit. J. Nutr. 92: 87-94. doi:10.1079/BJN20041180 Anne M. D., F. Blachier, M. Gotteland, M. Andriamihaja, P. H. Benetti, Y. Sanz, and D. Tomé. 2013. Intestinal luminal nitrogen metabolism: Role of the gut microbiota and consequences for the host. Pharmacol. Res. 68 (1):95-107. Awano N., M. Wada, H. Mori, S. Nakamori, and H. Takagi. 2005. Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl. Environ. Microbiol. 71:4149-52. Awati A., B. A. Williams, M. W. Bosch, W. J. J. Gerrits and M. W. A. Verstegen. 2006. Effect of inclusion of fermentable carbohydrates in the diet on fermentation endproduct profile in feces of weanling piglets. J. Anim. Sci. 84:2133-2140. Bakker G. C. M., R. A. Dekker, R. and W. Jongbloed. 1998. Non-starch polysaccharides in pig feeding. Vet. Quart. 20:59-64. Bansal T., R. C. Alaniz, and T. K. Wood. 2010. The bacterial signal indole increases epithelial cell tight junction resistance and attenuates indicators of inflammation. Proceedings of the National Academy of Sciences of the United States of America. 107: 228-233. Barrington S. 1994. Odor measurement, commercial substrates and biofilters. Proc. of International Round Table on Swine Odor Control. 40-45. Bauer E., B. A. Williams, C. Voigt, R. Mosenthin and M. W. A. Verstegen. 2001. Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates. Anim. Sci. 73: 313-322. Bellego L. L., J. Van Milgen, S. Dubois, and J. Noblet. 2001. Energy utilization of low-protein diets in growing pigs. J. Anim. Sci. 79:1259-1271. Bergman E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70:567-590. Bikker P., A. Dirkzwager, J. Fledderus, P. Trevisi, I. le Huerou-Luron, J. P. Lalles, and A. Awati. 2006. The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets. J. Anim. Sci. 84:3337-3345. Blachier F., F. Mariotti, J. F. Huneau, and D. Tomé. 2007. Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids. 33:547-562. doi:10.1007/s00726-006-0477-9 Bindelle J, A. Buldgen, M. Delacollette, J. Wavreille, R. Agneessens, J. P. Destain and P. Leterme. 2009. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs reflected by in vitro fermentation and N incorporation by fecal bacteria. J. Anim. Sci. 87, 583-593. Bindelle J., A. Buldgen, D. Lambotte, J. Wavreille, and P. Leterme. 2007. Effect of pig faecal donor and of pig diet composition on in vitro fermentation of sugar beet pulp. Anim. Feed Sci. Technol. 132:212-226. Boisen S. 1997. Ideal protein and its suitability to characterize protein quality in pig feeds. A review. Acta Agri Scand. Section A-Anim. Sci. 47:31-38. Bone E., A. Tamm, and M. Hill. 1976. Production of urinary phenols by gutbacteria and their possible role in causation of large bowel cancer. J. Clin. Nutr. 29:1448-1454. Bourque D., J. Bisaillon, R. Beaudet, M. Sylvestre, M. Ishaque, and A. Morin. 1987. Microbiological degradation of malodorous substances of swine waste under aerobic conditions Appl. and Environ. Microbiol. 53:137-141. Bundy D. S. 1997. Odour control technologies. In environmental issues in pork production, The Allen D. Leman Swine Conference. September 20th, Minnesota Extension Service, University of Minnesota. 59-65. Bundy D. S., Li X., Zhu J. and Hoff S. F. 1997. Malodour abatement by different covering materials. In Proceedings of the International Symposium on Ammonia and Odour Control from Animal Production Facilities. 413-420. Canh T. T., A. J. A. Aarnink, J. B. Schutte, A. Sutton, D. J. Langhout and M. W. A. Verstegen. 1998. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing-finishing pigs. Livest. Prod Sci. 56:181-191. Carneiro M. S. C., M. M. Lordelo, L. F. Cunha, and J. P. B. Freire. 2008. Effects of dietary fibre source and enzyme supplementation on faecal apparent digestibility, short chain fatty acid production and activity of bacterial enzymes in the gut of piglets. Anim. Feed Sci. Technol. 146 :124-136. doi:10.1016/j.anifeedsci.2007.12.001. Chacko A. and J. H. Cummings. 1988. Nitrogen losses from the human small bowel: obligatory losses and the effect of physical form of food gut. 29:809-815 Chassard C. and A. B. Donadille. 2006. H2 and acetate transfers during xylan fermentation between a butyrate-producing xylanolytic species and hydrogenotrophic microorganisms from the human gut. FEMS Microbiology Letters. 254:116-22. Choct M. 1997. Feed non-starch polysaccharides: chemical structures and nutritional significance. Feed Milling International. 191:13-26. Choct M., L. Y. Dersjant, J. McLeish, and M. Peisker. 2010. Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Austal. J. Anim. 23: 1386-1398. Clunies S. 1984. In vitro estimation of dry matter and crude protein digestbility. Poultry Sci. 63:89-96. Coles L. T., P. J. Moughan, and A. J. Darragh. 2005. In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Anim. Feed Sci. Technol. 421-444. Cone J. W., A. W. Jongbloed, A. H. V. Gelder and L. de Lange. 2005. Estimation of protein fermentation in the large intestine of pigs using a gas production technique. Animal Feed Science and Technology. 123-124:463-472. Dai Z. L., G. Wu, and W. Y. Zhu. 2011. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Frontiers in Bioscience. 16 :1768-1786. Davies Z. S., D. Mason, A. E. Brooks, G. W. Griffith, R. J. Merry, and M. K. Theodorou. 2000. An automated system for measuring gas production from forages inoculated with rumen fluid and its use in determining the effect of enzymes on grass silage. Anim. Feed Sci. Technol. 83:205-221. Dierick N. A., I. J. Vervaeke, D. I. Demeyer, and J. A. Decuypere. 1989. Approach to the energetic importance of fibre digestion in pigs. I. Importance of fermentation in the overall energy supply. Anim. Feed Sci. Technol. 23:141-167. doi:10.1016/0377-8401(89)90095-3 Drake A. P., M. F. Fuller, and A. Chesson. 1991. Simultaneous extimations of precaecal protein and carbohydrate digestion the pigs. In vitro digestion of pig and poultry. 162-176. Evenepoel P., D. Claus, B. Geypens, M. Hiele, K. Geboes, and P. Rutgeerts. 1999. Amount and fate of egg protein escaping assimilation in the small intestine of humans. American Journal of Physiology. 277: 935-943 Fernández J. A., C. F. M. de Lange. 2007. Definition of apparent, true, and standardized ileal digestibility of amino acids in pigs. Livest. Sci. 109:282-285. Figueroa J. L., A. J. Lewis, P. S. Miller, R. L. Fischer, R. S. Gomez, and Diedrichsen R. M. 2002. Nitrogen metabolism and growth performance of gilts fed standard corn-soybean meal diets or low-crude protein, amino acid-supplemented diets. J. Anim. Sci. 80:2911-2919. Fouhse J. M., R. T. Zijlstra, and B. P. Willing. 2016. The role of gut microbiota in the health and disease of pigs. Anim. Front Rev. Mag. Anim. Agric. 6:30-36. Fuller M. F., R. McWilliam, T. C. Wang, and L. R. Giles. 1989. The optimum dietary amino acid pattern for growing pigs. Brit. J. Nutri. 62:255-267. Gauthier S. F., C. Vachon, D. John, J. Jones, L. Savoie.1982. Assessment of protein digestibility by in vitro enzymatic hydrolysis with simultaneous dialysis. The Journal of Nutrition. 112: 1718-1725. Gibson J. A., G. E. Sladen, and A. M. Dawson. 1976. Protein absorption and ammonia production: the effects of dietary protein and removal of the colon. Br. J. Nutr. 35 :61-65. Giuberti G., A. Gallo, M. Moschini, and F. Masoero. 2015. New insight into the role of resistant starch in pig nutrition. Anim. Feed Sci. Technol. 201:1-13. Groot J. C. J., J. W. Cone, B. A. Williams, F. M. A. Debersaques, and, E. A. Lantinga. 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 64: 77-89. Haenen D., J. Zhang, C. Souza, G. Bosch, I. M. Van Der Meer, J. Van Arkel, J. J. G. C. Van Den Borne, P. Odette, H. Smidt, B. Kemp, G. J. E. J. A. Hooiveld. 2013. Diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J. Nutr. 143:274-283. Hoff S. J., D. S. Bundy and X. W. Li. 1997. Dust effects on odor and odor compounds. Animal Production facilities. 101-110. Hong J. S., G. I. Lee, X. H. Jin, and Y. Y. Kim. 2016. Effect of dietary energy levels and phase feeding by protein levels on growth performance, blood profiles and carcass characteristics in growing-finishing pigs. J. Anim. Sci. Technol. 58:37-42. Hoff S. J., L. Dong, X. W. Li, D. S. Bundy, J. D. Harmon and H. Xin. 1997. Odor removal using biomass filters. Live. Enviro. 5:101-108. Houdijk J. G. M., M. W. A. Verstegen, M. W. Bosch, and K. J. M. van Laere. 2002. Dietary fructooligosaccharides and trans-galactooligosaccharides can affect fermentation characteristics in gut contents and portal plasma of growing pigs. Livest. Prod. Sci. 73:175-184. Huang Z., P. E. Urriola, I. J. Salfer, M. D. Stern, and G. C. Shurson. 2017. Differences in in vitro hydrolysis and fermentation among and within high-fiber ingredients using a modified three-step procedure in growing pigs. J. Anim. Sci. 95:5497-5506. Inman C. F., K. Haverson, S. R. Konstantinov, P. H. Jones, C. Harris, H. Smidt, B. Miller, and M. Bailey. 2010. Rearing environment affects development of the immune system in neonates. Clin Exp Immunol. 160:431-439. Institute National de la recherche agronomique (INRA). 1984. The diet of non-ruminant animals: pigs, rabbits and poultry. Paris: Institut National de la Recherche Agronomique 282. Iyayi E. A., and O Adeola. 2015. Quantification of short-chain fatty acids and energy production from hindgut fermentation in cannulated pigs fed graded levels of wheat bran. J. Anim. Sci. 93:4781-4787. doi:10.2527/jas.2015-9081. Jang J. C., Z. Zeng, G. C. Shurson, and P. E. Urriola. 2019. Effects of Gas Production Recording System and Pig Fecal Inoculum Volume on Kinetics and Variation of In Vitro Fermentation using Corn Distiller’s Dried Grains with Solubles and Soybean Hulls. Animal. 9: 773-782. Jaworski N. W., H. N. Larke, K. E. Bach Knudsen, and H. H. Stein. 2015. Carbohydrate composition and in vitro dry matter digestibility of dry matter and non-starch polysaccharides in corn, sorghum, and wheat and co-products from these grains. J. Anim. Sci. 93:1103-1113. doi:10.2527/jas.2014-8147 Jensen B. B., and H. Jorgensen. 1994. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Appl. Environ. Microbiol. 60: 1897-1904. Jha R., T. A. Woyengo, J. Li, M. R. Bedford, T. Vasanthan, and R. T. Zijlstra. 2015. Enzymes enhance degradation of the fiber-starch-protein matrix of distillers dried grains with solubles as revealed by a porcine in vitro fermentation model and microscopy. J. Anim. Sci. 93:1039-1051. Jha R, and J. D. Berrocoso. 2015. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal. 9: 1441-1452. 10.1017/S1751731115000919 Jha R. and P. Leterme. 2012. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Animal. 6:603-611. Jha R., J. Bindelle, B. Rossnagel, A. Van Kessel, and P. Leterme. 2011. In vitro evaluation of the fermentation characteristics of the carbohydrate fractions of hulless barley and other cereals in the gastrointestinal tract of pigs. Anim. Feed Sci. Technol. 163:185-193. doi:10.1016/j.anifeedsci.2010.10.006 Jha R., J. Bindelle, A. Van Kessel, and P. Leterme 2011. In vitro fibre fermentation of feed ingredients with varying fermentable carbohydrate and protein levels and protein synthesis by colonic bacteria isolated from pigs. Anim. Feed Sci. Technol. 165:191-200. doi:10.1016/j.anifeedsci.2010.10.002 Jha R., T. A. Woyengo, J. Li, M. R. Bedford, T. Vasanthan, R. T. Zijlstra. 2015. Enzymes enhance degradation of the fiber-starch-protein matrix of distillers dried grains with solubles as revealed by a porcine in vitro fermentation model and microscopy. J. Anim. Sci. 93:1039-1051. doi:10.2527/jas.2014-7910 Jo J. K., S. L. Ingale, J. S. Kim, Y. W. Kim, K. H. Kim, J. D. Lohakare. 2012. Effects of exogenous enzyme supplementation to corn-and soybean meal-based or complex diets on growth performance, nutrient digestibility, and blood metabolites in growing pigs. J Anim Sci. 90: 3041-3048. doi:10.2527/jas.2010-3430 Jolicoeur P., and A. Morin. 1987. Isolation of Acinetobacter calcoaceticus Strains degrading the volatile fatty acids of swine wastes. Biolog. Wastes 19:133-140. Kadota H., and Y. Ishida. 1972. Production of volatile sulfur compounds by microorganisms. Annual Review of Microbiology. 26:127-38. Kanani T. A., E. Akochi, A. F. MacKenzie, and I. Alli. 1992. Barrington Odor control in liquid hog manure by added amendments and aeration. J. Environ. Qual. 21:704-708. Kerr B. J., L. L. Southern, T. D. Bidner, K. G. Friesen, and R. A. Easter. 2003. Influence of dietary protein level, amino acid supplementation, and dietary energy levels on growing-finishing pig performance and carcass composition. J. Anim. Sci. 81:3075-3087. Kim C. H., J. Park, and M. Kim. 2014. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw. 14:277-288. Kim H. B., K. Borewicz, B. A. White, R. S. Singer, S. Sreevatsan, Z. J. Tu, and R. E. Isaacson. 2011. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet. Microbiol. 153:124-133. doi:10.1016/j.vetmic.05.021. Kramer P. 1996. The effect of varying sodium loads on the ileal excreta of human ileostomized subjects. J. Clini. Invest. 45:1710-1718 Knudsen K. E. B. 1997. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Tech. 67: 319-338. Konstantinov S. R., A. A. Awati, B. A. Williams, B. G. Miller, P. Jones, C.R. Stokes, A. D. L. Akkermans, H. Smidt, W. M. de Vos. 2006. Post-natal development of the porcine microbiota composition and activities. Environ Microbiol. 8:1191-1199. Le P. D., A. J. A. Aarnink, N. W. M. Ogink, P. M. Becker and M. W. A. Verstegen. 2005. Odour from animal production facilities: its relationship to diet. Nutrition Research Reviews 18, 3-30. Li Y., H. Wei, F. Li, S. Chen, Y. Duan, Q. Guo, Y. Liu, and Y. Yin. 2016. Supplementation of branched-chain amino acids in protein-restricted diets modulates the expression levels of amino acid transporters and energy metabolism associated regulators in the adipose tissue of growing pigs. Anim. Nutr. 1: 24-32. Li D. F., W. T. Guan and H. M. Yu. 1998. Effects of amino acid supplementation on growth performance for weanling, growing and finishing pigs. Anim. Sci. Tech. 11:21-29. Li S., Sauer W. C., Huang S. X., Gabert V. M. 1996. Effect of β-glucanase supplementation to hulless barley- or wheat-soybean meal diets on the digestibilities of energy, protein, β-glucans, and amino acids in young pigs. J. Anim. Sci. 74: 1649-1656. doi:10.2527/1996.7471649x Liao C. M., and D. S. Bundy. 1994. Bacteria additives to the changes in gaseous mass transfer from stored swine manure. J. Environ. Sci. Health 6:1219-1249. Liu S., J. Q. Ni, J. S. Radcliffe, and C. E. Vonderohe. 2017. Mitigation of ammonia emissions from pig production using reduced dietary crude protein with amino acid supplementation. Bioresour. Technol. 233:200-208. Lopez J., R. D. Goodband, G. L. Allee, G. W. Jesse, J. L. Nelssen, T. M. D. Okach, D. Spiers, and B. A. Becker. 1994.The effects of diets formulated on an ideal protein basis on growth performance, carcass characteristics, and thermal balance of finishing gilts housed in a hot, diurnal environment. J. Anim. Sci. 72:367-379. Macfarlane G. T. and J. P. Cummings. 1991. The colonic flora, fermentation and large bowel digestive function in the large intestine. Physiology, pathophysiology and disease. 51-92. Macfarlane G. T., and S. Macfarlane. 2012. Bacteria, colonic fermentation, and gastrointestinal health. Journal of AOAC International. 95:50-60. Mach N., M. Berri, J. Estellé, F. Levenez, G. Lemonnier, C. Denis, J. J. Leplat, C. Chevaleyre, Y. Billon, J. Doré, C. R. Gaillard, and P. Lepage. 2015. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ Microbiol. Rep. 7:554-569. Martinez I., J. Kim, P. R. Duffy, V. L. Schlegel, and J. Walter. 2010. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One. 5:1-11. McBurney M. I., and L. U. 1989. Thompson. Effect of human faecal donor on in vitro fermentation variables. Scand. J. Gastroenterol. 24:359-367. doi: 10.3109/00365528909093060. McCormack U. M., T. Curiao, S. G. Buzoianu, M. L. Prieto, T Ryan, P. Varley, F. Crispie, E. Magowan, B. U. Metzler-Zebeli, and D. Berry. 2017. Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl. Environ. Microbiol. 83-92. Meijers B. K. I., and Evenepoel P. 2011. The gut-kidney axis: indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrology Dialysis Transplantation. 26: 759-761. Meng X, and Slominski B. A. 2005. Nutritive values of corn, soybean meal, canola meal, and peas for broiler chickens as affected by a multicarbohydrase preparation of cell wall degrading enzymes. Poult. Sci. 84: 1242-1251. Meyer T. W., and T. H. Hostetter. 2012. Uremic solutes from colon microbes. Kidney International. 81: 949-954. Milgen J., and J. Y. Dourmad. 2015. Concept and application of ideal protein for pigs. J Anim. Sci Biotech. 6:15. Miller T. W., E. A. Wang, S Gould., E. V. Stein, S. Kaur, and L. Lim. 2012. Hydrogen sulfide is an endogenous potentiator of T cell activation. J. Biologic. Chem. 287:11-21. Mimoun S, M. Andriamihaja, C. Chaumontet, C. Atanasiu, R. Benamouzig, J. M. Blouin. 2012. Detoxification of H2S by differentiated colonic epithelial cells: implication of the sulfide oxidizing unit and of the cell respiratory capacity. Antioxidants Redox Signalling 17:1-10. Mitchell H. H. 1950. Some species and age differences in amino acid requirements. In: Albanese A, editor. Protein and amino acid nutrition. Academic press. 11-43. Moughan P. J., and W. C. Smith. 1984. Prediction of dietary protein quality based on a model of the digestion and metabolism of nitrogen in the growing pig. J. Agr. Res. 27:501-507. Mroz Z, Moeser A. J., K. Vreman, J. T. van Diepen, T. van Kempen, T. T. Canh and A. W. Jongbloed. 2000. Effects of dietary carbohydrates and buffering capacity on nutrient digestibility and manure characteristics in finishing pigs. J. Anim. Sci. 78:3096-3106. Munks B., A. Robinson, E. F. Beach, and H. H. Williams. 1945. Amino acids in the production of chicken egg and muscle. Poult. Sci. 24:459-464. Nahm K. H. 2003. Influences of fermentable carbohydrates on shifting nitrogen excretion and reducing ammonia emission of pigs. Critical Reviews Environ. Sci. Technol. 30: 165-186. Neeraja R., D. K. S. Ramani, M. Song, J.l Park, B. B. P. Puligundla, and S. Park. 2019. Dietary multi-enzyme complex improves In Vitro nutrient digestibility and hind gut microbial fermentation of pigs. PLoS One. 14(5). Nortey T. N., J. F. Patience, P. H. Simmins, N. L. Trottier, and R. T Zijlstra. 2007. Effects of individual or combined xylanase and phytase supplementation on energy, amino acid, and phosphorus digestibility and growth performance of grower swine fed wheat-based diets containing wheat millrun. J. Anim. Sci. 85: 1432-1443. doi:10.2527/jas.2006-613 Nofrarías M., D. Martínez, J. Pujols, N. Majó, and J. F. Pérez. 2007. Long-term intake of resistant starch improves colonic mucosal integrity and reduces gut apoptosis and blood immune cells. Nutrition. 23:861-870. NRC. 2012. Nutrient requirements of swine. 11th rev. ed Natl. Acad. Press, Washington, D.C. Nyangale E. P., D. S. Mottram, and G. R. Gibson. 2012. Gut Microbial Activity, Implications for Health and Disease: The Potential Role of Metabolite Analysis. J. Proteome Rese. 11: 5573-5585. Ohta Y., and M. Ikeda. 1978. Deodorization of pig feces by actinomycetes. Appl. Environ. Microbiol. 36:487-491. O’Neill H. V. M., J. A. Smith, and M. R. Bedford.2014. Multicarbohydrase enzymes for non-ruminants. Asian-Austral J. Anim. 27: 290-301. O'Neill D, and V. Phillips. 1992. A review of the control of odour nuisance from livestock buildings: Part 3, properties of the odorous substances which have been identified in livestock wastes or in the air around them. J. Agr. Eng. Res. 53: 23-50. Opapeju F. O., M. Rademacher, G. Blank, and C. M. Nyachoti. 2008. Effect of low-protein amino acid-supplemented diets on the growth performance, gut morphology, organ weights and digesta characteristics of weaned pigs. Animal. 2:1457-1464. Pan L., H. Ma, X. S. Piao, L. Liu, and D.F. Li. 2018. A computer-controlled simulated digestion system is a promising in vitro digestibility technique to predict digestible energy of corn grain for growing pigs. Animal Feed Sci. Technol. 235:41-49 Park K. R., C. S. Park, and B. G. Kim. 2016. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs. Springerplus. 5:598 doi:10.1186/s40064-016-2194-5 Passos A. A., and S. W. Kim. 2014. Use of enzymes in pig diets. In: VI Congresso Latino Americano de Nutricao Animal-SALA SUINOS. Patience J. F., M. R. Bedford, H. L. Classen, and J. Inborr.1992. The effect of dietary enzyme supplementation of rye-and barley-based diets on digestion and subsequent performance in weanling pigs. Can. J. Anim. Sci. 72: 97-105. Paul T. 1992. Practical and environmentally acceptable methods of removal of nitrogen and phosphorus from pig wastes and wastewaters. Proc. International Pig Waste Treatment Symposium 13-31. Pedersen G., J. Brynskov, and T. Saermark.2002. Phenol toxicity and conjugation in human colonic epithelial cells. Scandinavian J. Gastroenterology. 37: 74-79. Pedersen C., J. S. Almeida, and H. H. Stein. 2016. Analysis of published data for standardized ileal digestibility of protein and amino acids in soy proteins fed to pigs. J. Anim. Sci. 4: 728-736. Petri D., J. E. Hill, and A. G. Van Kessel. 2010. Microbial succession in the gastrointestinal tract (GIT) of the pre-weaned pig. Livest. Sci. 133:107-109. Piva A, A. Panciroli, E. Meola, and A. Formigoni. 1996. Lactitol enhances short-chain fatty acid and gas production by swine cecal microflora to a greater extent when fermenting low rather than high fiber diets. J. Nutrition. 126:280-289. Portejoie, S., J. Y. Dourmad, J. Martinez, and Y. Lebreton. 2004. Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livest. Prod. Sci. 91:45-55. Prandini A., S. Sigolo, M. Morlacchini, E. Grilli, and L. Fiorentini. 2013. Microencapsulate lysine and low-protein diets: Effects on performance, carcass characteristics and nitrogen excretion in heavy growing-finishing pigs. J. Anim. Sci. 91:4226-4234. Prescott L. M., J. P. Harley, and D. A. Klein. 1996. Microbiology, Chicago: Wm. C. Brown Publishers. Prykhodko O, S. G. Pierzynowski, E. Nikpey, E. A. Sureda, O. Fedkiv, and B. R. Weström. 2015. Pancreatic and pancreatic-like microbial proteases accelerate gut maturation in neonatal rats. PloS One 10: 2. Ravindran V. 2013. Feed enzymes: The science, practice, and metabolic realities. J. Appl. Poult. Res. 22: 628-636. Ramayo C. Y., N. Mach, P. Lepage, F. Levenez, C. Denis, G. Lemonnier, J. J. Leplat, Y. Billon, M. Berri, and J. Dore. 2016. Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME J. doi:10:2973-2977. Recharla N., K. Kim, J. Park, J. Jeong, Y. Jeong, H. Lee, O. Hwang, J. Ryu, Y. Baek, Y. Oh, and S. Park. 2017. Effects of amino acid composition in pig diet on odorous compounds and microbial characteristics of swine excreta. J. Anim. Sci. Technol. 59: 28. Rymer C., J. A. Huntington, B. A. Williams, and D. I. Givens. 2005. In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed. Sci. Technol. 9-30. doi: 10.1016/j.anifeedsci.2005.04.055. Savoie L. and S. F. Gauthier. 1986. Dialysis cell for the in vitro measurement of protein digestibility. Food Sci. 51:494-498. Sieo C. C., N. Abdullah, W. S. Tan, and Y. W. Ho. 2005. Influence of β-glucanase-producing Lactobacillus strains on intestinal characteristics and feed passage rate of broiler chickens. Poult. Sci. 84: 734-41. doi:10.1093/ps/84.5.73 Slominski B. A. 2011. Recent advances in research on enzymes for poultry diets. Poult. Sci. 90: 2013-2023. doi:10.3382/ps.2011-01372 Smith E.A., and G. T. Macfarlane. 1997. Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe. 3:327-337. Smith E. A., and G. T. Macfarlane. 1997. Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microbial. Ecology. 33:180-188. Sridharan G. V., K. Choi, and C. Klemashevich. 2014. Prediction and quantification of bioactive microbiota metabolites in the mouse gut. Nature Communications. 5:54-62. Stephane P. L. 1999. Barn management and control of odours. Advances pork production. 10 :81-90. Stein H. H., M. F. Fuller, P. J. Moughan, B. Sève, R. Mosenthin, A. J. M. Jansman, F. G. Dmiddy, S. D. Gregory, I. B. Smith, and J. C. Goligher. 1960. Faecal loss of fluid, electrolytes, and nitrogen in colitis before and after ileostomy. Lancet. 1 :14-19 Sutton A. L., K. B. Kephart, M. W. Verstegen, T. T. Canh, P. J. Hobbs.1999. Potential for reduction of odorous compounds in swine manure through diet modification. J. Anim. Sci. 77: 430-439. Tactacan G. B., S. Y. Cho, J. H. Cho, I. H. Kim. 2016. Performance responses, nutrient digestibility, blood characteristics, and measures of gastrointestinal health in weanling pigs fed protease enzyme. Asian-Austral. J. Anim. 29: 998. Toledo J. B., A. C. Furlan, P. C. Pozza, J. Carraro, G. Moresco, S. L. Ferreira, and A. G. Gallego. 2014. Reduction of the crude protein content of diets supplemented with essential amino acids for piglets weighing 15 to 30 kilograms. R. Bras. Zootec. 43:301-309 Upadhaya S. D., H. M. Yun, and I. H. Kim. 2016. Influence of low or high-density corn and soybean meal-based diets and protease supplementation on growth performance, apparent digestibility, blood characteristics and noxious gas emission of finishing pigs. Anim. Feed Sci. Tech. 216:281-7. Vahjen W, T. Osswald, K. Schäfer, and O. Simon. 2007. Comparison of a xylanase and a complex of non-starch polysaccharide-degrading enzymes with regard to performance and bacterial metabolism in weaned piglets. Arch. Anim. Nutr. 61: 90-102. 10.1080/17450390701203881 Velázquez O.C., H. M. Lederer, and J. L. Rombeau. 1997. Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Adv. Exp. Med. Biol. 427:123-134. Wang H, Y. Guo, and J. C. Shih. 2008. Effects of dietary supplementation of keratinase on growth performance, nitrogen retention and intestinal morphology of broiler chickens fed diets with soybean and cottonseed meals. Anim. Feed Sci. Tech. 140: 376-84. Wang T. C., and M. F. Fuller. 1989. The optimum dietary amino acid pattern for growing pigs. Brit. J. Nutr. 62:77-89. Ward N. E., B. A. Slominski, and S. R. Fernandez. 2008. Non-starch polysaccharide content of corn grain. Poult. Sci. 87:91. Weaver A. G., A. Krause, T. Miller, and J. Wolin. 1992. Cornstarch fermentation by the colonic microbial community yields more butyrate than does cabbage fiber fermentation; cornstarch fermentation rates correlate negatively. Am. J. Clin. Nutr. 55:70-77. Wolfe R. S. 1971. Microbial formation of methane. Microbiol. Physiol. (6) 107-145. Yen J. T., J. A. Nienaber, D. A. Hill, and W. G. Pond. 1991. Potential contribution of absorbed volatile fatty acids to whole-animal energy requirement in conscious swine. J. Anim. Sci. 69:2001-2012. doi:10.2527/1991.6952001. Yin F., Z. Zhang, J. Huang, Y. Yin. 2010. Digestion rate of dietary starch affects systemic circulation of amino acids in weaned pigs. Br. J. Nutr. 103: 1404-1412. doi:10.1017/S0007114509993321. Yin J., Y. Li, X. Zhu, H. Han, W. Ren, S. Chen, P. Bin, G. Liu, X. Huang, and R. Fang. 2017. Effects of long-term protein restriction on meat quality, muscle amino acids, and amino acid transporters in pigs. J. Agric. Food Chem. 65:9297-9304. Yue L. Y., and S. Y. Qiao. 2008. Effects of low-protein diets supplemented with crystalline amino acids on performance and intestinal development in piglets over the first 2 weeks after weaning. Livest. Sci. 115:144-152. Yu D., W. Zhu, and S. Hang. 2019. Effects of long-term dietary protein restriction on intestinal morphology, digestive enzymes, gut hormones, and colonic microbiota in pigs. Animal. 9:180-187. Yuan L., M. Wang, X. Zhang, and Z. Wang. 2017. Effects of protease and non-starch polysaccharide enzyme on performance, digestive function, activity and gene expression of endogenous enzyme of broilers. PloS One. 12(3):e0173941. Zervas S. and R. T. Zijlstra. 2002. Effects of dietary protein and fermentable fiber on nitrogen excretion patterns and plasma urea in grower pigs. J. Anim. Sci. 80:3247-3256. Zhang Z., Z. Liu, S. Zhang, C. Lai, D. Ma, and C. Huang. 2019. Effect of inclusion level of corn germ meal on the digestible and metabolizable energy and evaluation of ileal AA digestibility of corn germ meal fed to growing pigs. J. Anim. Sci. 97: 768-778. Zhang S, L. Cai, J. A. Koziel, S. J. Hoff, K. Y. Heathcote, and L. Jacobson. 2010. Odor and Odorous Chemical Emissions from Animal Buildings: Part 5-Correlations between Odor Intensities and Chemical Concentrations (gc-ms/o). International Symposium on Air Quality and Manure Management for Agriculture Conference Proceedings, 13-16 Zhantian S., M. Qiugang, Z. Li, and C. Ji. 2009. Effect of partial substitution of dietary spray-dried porcine plasma or fishmeal with soybean and shrimp protein hydrolysate on growth performance, nutrient digestibility and serum biochemical parameters of weanling piglets. Asian-australas. J. Anim. Sci. 22: 1032-1037. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50620 | - |
| dc.description.abstract | 畜牧產業在降低生產成本同時也期望能同時降低環境污染,提供豬隻超過其實際蛋白質需求量的飼糧,不但會增加營養浪費並提高成本,未消化的蛋白質和其他含氮代謝物以排泄物排出體外,也導致隨後的環境污染問題。減少豬隻日糧中的粗蛋白(crude protein, CP)含量並補充結晶胺基酸以滿足相同標準迴腸消化率(standardised ileal digestibility,SID)要求,已成為相應的解決方案。 在豬隻的蛋白質需求研究,以動物飼養試驗需要較長的實驗時間和動物飼養成本,而以體外消化和發酵整合測定,可以在短期內進行多種測試飼糧的評估。但是不同的消化模式和接種源對測試結果具有明顯的差異,因此本試驗透過比較搖瓶與透析兩種消化方法,生長期豬隻飼糧調整以不同CP含量,配合不同階段豬隻來源糞便接種,評估體外消化發酵法在評估蛋白質調整對排放之影響,再配合動物試驗驗證體內外評估指標的關聯。 第一階段體外試驗結果顯示,使用搖瓶和透析法進行消化後,搖瓶法對於氮的消化率方面顯著低於透析法(P < 0.05),由於搖瓶的消化模式並無法完整的移除消化後產物,因此在模擬體外發酵時可能出現較大差異。使用搖瓶法消化後的產物進行發酵後,不同生長期飼糧調整CP含量的處理組間,其發酵產物以及產氣參數兩個指標皆無顯著差異。原因可能是由於消化方式可能導致的誤差,導致無法正確的推斷出降低飼糧CP含量對於減少排放的影響。而經由透析法消化後再進行體外發酵,所測得的氨態氮、蛋白酶以及尿素酶的活性皆會隨著CP含量降低顯著減少(P < 0.05);產氣參數中最高產氣發生時間(T max)隨著CP含量下降顯著性上升(P < 0.05),最大產氣速率(R max)隨著CP含量下降顯著下降(P < 0.05)。揮發性脂肪酸之濃度顯示,丁酸含量在降低CP含量的處理組中顯著較低(P < 0.05)。利用屏東以及宜蘭兩地豬場不同生長期之豬隻糞便接種進行發酵後,其消化與產氣動力結果所呈現的趨勢皆相同。進一步測試降低飼糧CP含量與添加消化酵素之組合處理,配合透析法消化的結果顯示,當飼糧當中添加商用蛋白酶以及非澱粉多醣酶,經體外消化再進行糞便接種發酵後,發酵產物中之氨態氮、蛋白酶活性、尿素酶活性、對甲酚、吲哚以及糞臭素濃度均顯著低於控制組 (P < 0.05)。經由重複實驗結果證明,利用透析法進行消化模式,並搭配新鮮豬糞接種進行體外發酵,能更準確地對飼糧特性進行評估。 動物試驗以起始體重30 kg之生長期豬隻進行,並提供滿足SID之CP=17%、CP=15%以及未滿足SID之原牧場的飼糧(控制組,CP=18%),經由四週的飼養實驗後,CP17%組生長效率顯著高於CP15%以及控制組(P < 0.05),豬糞中每日總氮排放量方面,在第二、三週時CP17%組也有顯著較佳的情形,而吲哚、糞臭素以及對甲酚濃度也隨著CP水準下降而顯著降低(P < 0.05),VFA含量、氨態氮、蛋白酶活性以及尿素酶活性在CP下降時顯著下降(P < 0.05),整體趨勢也與體外試驗相同。 整合上述體內外試驗結果來看,對豬隻飼糧評估其餵飼對排放的影響時,使用適當的體外的實驗模式進行臭味或含氮廢物排放之篩選,再配合動物實驗進行生長性能的評估,可提升實驗的準確性以及便利性,並減少在動物實驗當中所需的時間及飼養成本,顯示體外試驗的操作結果可以對應到動物實驗當中進行評估使用。 | zh_TW |
| dc.description.abstract | In animal production industry, there is an expectation to reduce production cost and decrease environmental pollution at the same time. Providing diets that over pig actual protein requirements will increase nutritional waste and feeding costs. Undigested proteins and other nitrogen metabolites are excreted from urine and faece then cause subsequent environmental pollution problems. Reducing the crude protein (CP) level in pig diets and supplementing with crystalline amino acids to meet the same standard ileal digestibility (SID) requirements has become a corresponding solution. In the study of pig protein requirements and adjustments, owing to higher time and cost in animal experiment, the in vitro digestion and fermentation integrated trial could provide an effective alternative method to test a variety of diets in a short period of time. However, different digestion model and inoculation source may result in significantly effect on the test results. To evaluate the applicality of the in vitro digestion and fermentation method in assessing the effect of protein adjustments on emissions, the experiment comparing the digestion methods of shake flask and dialysis were tested. Fecal samples from two growth period pig fed different CP levels were collected as inoculation source. Finally, the in vivo feeding experiment was proceeded to proof the effectiveness of the in vitro indicators. The first-stage in vitro test indicated that significantly lower nitrogen digestibility in shake flasks digestion compare with dialysis (P < 0.05), it means that the shake flask digestion cannot complete remove the digest products. It may lead to faulty in vitro fermentation result. It showed no significant differences in the fermentation products and gas production parameters between the treatments of CP levels in the growing pig diets under shaking flask digestion treatment. However, due to the possible misestimate from the digestion mode, it is difficile to correctly conclude the effect of reducing diet CP level on emissions. The fermentation result of samples that digested by dialysis method indicated that the ammonia nitrogen, protease and urease activities were significantly reduced with CP levels decreased (P < 0.05). According to gas production parameters, the highest gas production time (Tmax) significantly increased (P < 0.05) and the maximum gas production rate (Rmax) significantly decresaed with the decreasing of CP levels (P < 0.05). In addition, the concentration butyric acid was significantly lower in the treatments with low CP levels (P < 0.05). The fecal inoculation source from Pingtung and Yilan also resulted in the same trends of digestion and gas production dynamics. In the next study, we combined the decreasing CP levels of diets and digestive enzymes supplementation as multiple-treatment for odor reducing. The results indicated that in the commercial versazyme and NSPase significantly decreased the concentration of ammonia nitrogen, p-cresol, indole and skatole, protease activity and urease activity compared with the control group (P < 0.05). The repeated experiment results implied that the in vitro dialysis digestion and fermentation method could accurately evaluate the utilization characteristics of the diets. The growing pigs which have 30 kg start weight were applied in animal experiment. Three diets including control diet (from original farm without SID modification, CP=18%) and test diets with CP=17% and CP=15% (satisfied the SID requirement) were fed in this trial for four weeks. The results showed that the growth efficiency of the CP17% group was significantly higher than other treatment groups (P < 0.05). Comparing to other treatment groups, the CP17% group also showed significantly lower daily total nitrogen emissions of pig feces in the second and the third week. The concentration of indole, skatole, p-cresol VFA and ammonia nitrogen, protease and urease activities were significantly decreased with the decreasing of diet CP levels. The resulted had the similarity trend with in vitro trial, it indicated that the in vitro results can be corresponding to animal experiments. In conclusion, to evaluate the emission impact of pig diets, the accuracy and convenience of evaluation could be improved by applying the appropriate in vitro experimental models to investigate odor and nitrogen waste emissions before animal experiments. The selected diet with in vitro evaluation could be fed to animal and estimate the growth performance. It could result in the reducing time and feeding costs in animal experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:49:09Z (GMT). No. of bitstreams: 1 U0001-1108202010150600.pdf: 4630344 bytes, checksum: af074b549bdca963ae2e961858e3e58b (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 謝誌 I 摘要 II Abstract IV 圖目錄 X 表目錄 XII 前言 1 第一章 文獻探討 2 一、 當前養豬產業所面臨的排放問題 2 二、 豬排泄物中的臭味來源 3 (一) 氨類 3 (二) 酚類及吲哚化合物 4 (三) 揮發性脂肪酸 6 (四) 含硫化合物 7 三、 減少臭味排放的方式 8 (一) 畜舍設計 8 (二) 改善廢物處理方法 9 (三) 調整飼糧 10 四、飼糧蛋白質調整於降低豬隻臭味排放之利用 11 (一) 理想蛋白質 12 (二) 胺基酸迴腸消化率的評估與使用 13 (三) 低蛋白質飼糧之應用 14 五、體外消化模式於豬隻飼糧評估之利用 15 (一) 體外二階段法 15 (二) 體外三階段法 16 (三) 動態模擬系統法 16 六、體外消化利用設備之探討 18 (一) 搖瓶消化模式 18 (二) 透析消化模式 18 (三) 產氣動力學評估 19 七、豬隻後腸微生物的組成對於發酵及臭味產生 20 (一) 微生物組成特徵 20 (二) 微生物酵素活性 21 第二章 材料與方法 22 一、 體外試驗實驗步驟: 22 (一) 飼料配方 22 (二) 搖瓶法 24 (三) 透析法 25 (四) 體外發酵 25 (五) 飼糧中添加酵素進行體外發酵 30 二、 體外試驗樣品分析 30 (一) 樣品收集 30 (二) 氨態氮濃度 30 (三) 蛋白酶活性 31 (四) 尿素酶活性 31 (五) 揮發性脂肪酸(VFA)分析 32 (六) 乾物質(Dry matter, DM) 34 (七) 粗蛋白質(Crude protein, CP) 34 (八) 產氣動力學 36 三、 動物試驗實驗步驟 36 (一) 豬隻分欄 36 (二) 豬隻飼料配方 37 (三) 豬隻樣品收集 37 四、 動物試驗樣品分析 37 (一) 樣品收集 37 (二) VFA分析 38 (三) 吲哚以及糞臭素分析 38 (四) 消化率測量方法 (以三氧化二鉻做為指示劑) 39 五、 統計模式 40 第三章 結果與討論 41 一、 體外試驗 41 (一) 三段式體外消化之搖瓶法與透析法之比較 41 (二) 不同接種源對體外發酵與含氮物排放之影響 55 (三) 飼糧中添加消化型酵素對體外發酵的產氣參數與含氮物之影響 70 二、 動物試驗 84 三、 比較體外試驗以及動物試驗之討論: 95 第四章 結論 97 第五章 參考文獻 98 | |
| dc.language.iso | zh-TW | |
| dc.subject | 酵素活性 | zh_TW |
| dc.subject | 三段式體外消化法 | zh_TW |
| dc.subject | 臭味排放 | zh_TW |
| dc.subject | 標準迴腸消化率 | zh_TW |
| dc.subject | 三段式體外消化法 | zh_TW |
| dc.subject | 酵素活性 | zh_TW |
| dc.subject | 標準迴腸消化率 | zh_TW |
| dc.subject | 臭味排放 | zh_TW |
| dc.subject | standard ileal digestibility | en |
| dc.subject | three-stage in vitro digestion method | en |
| dc.subject | standard ileal digestibility | en |
| dc.subject | odor emission | en |
| dc.subject | enzyme activity | en |
| dc.subject | three-stage in vitro digestion method | en |
| dc.subject | odor emission | en |
| dc.subject | enzyme activity | en |
| dc.title | 應用三段式體外消化法評估飼糧蛋白質濃度對豬隻糞便排放特性之影響 | zh_TW |
| dc.title | To evaluate the effect of dietary protein concentration on swine fecal emission profile via three step in vitro digestion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳靜宜(Ching-Yi Chen),魏恒巍(Hen-Wei Wei),余祺(Chi Yu), 李德南(Der-Nan Li) | |
| dc.subject.keyword | 三段式體外消化法,標準迴腸消化率,臭味排放,酵素活性, | zh_TW |
| dc.subject.keyword | three-stage in vitro digestion method,standard ileal digestibility,odor emission,enzyme activity, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU202002899 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-11 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1108202010150600.pdf 未授權公開取用 | 4.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
