Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50610
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorShih-Heng Sunen
dc.contributor.author孫士恆zh_TW
dc.date.accessioned2021-06-15T12:48:38Z-
dc.date.available2017-07-26
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-21
dc.identifier.citation1. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106, 874 (1957).
2. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92, 133115 (2008).
3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
4. J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173 (1991).
5. E. Kretschmann, and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturf. 23A, 2135 (1968).
6. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005).
7. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870 (2003).
8. H.L. Offerhaus, B. van de Bergen, M. Escalante, F.B. Segerink, J.P. Korterik, and N.F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5, 2144 (2005).
9. J. A. Sanchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
10. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. linear optical properties,” Phys. Rev. B 53, 2425 (1996).
11. J. h. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005).
12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
13. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377 (1908).
14. V. M. Shalaev, R. Botet, J. Mercer, and E. B. Stechel, “Optical properties of self-affine thin films,” Phys. Rev. B 54, 8235 (1996).
15. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783 (1985).
16. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441 (1995).
17. W. L. Barnes, S. C. Kitson, T. W. preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654 (1997).
18. C. Bonnand, J. Bellessa, C. Symond, and J. C. Plenet, “Polaritonic emission via surface plasmon cross coupling,” App. Phys. Lett. 89, 231119 (2006).
19. T.W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).
20. H. F. Ghaemi, T. Thio, D. E. Grupp, T.W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes” Phys. Rev. B 58, 6779 (1998).
21. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
22. A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson, “Interaction of metal particles with adsorbed dye molecules: absorption and luminescence,” Opt. Lett. 5, 368 (1980).
23. A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24, 4906 (1981).
24. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449 (2002).
25. K T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
26. Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007).
27. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310 (2002).
28. E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308, 1274 (2005).
29. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79, 711 (2001).
30. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, New York, 1997).
31. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1–xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94, 6477 (2003).
32. A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94, 2779 (2003).
33. M. A. Khan, “AlGaN multiple quantum well based deep UV LEDs and their applications,” Phys. Stat. Sol. A 203, 1764-1770 (2006).
34. H. Hirayama, S. Fujikawa, and N. Kamata, “Recent progress in AlGaN- based deep-UV LEDs,” Electron. Commun. Jpn. 98, 1-8 (2015).
35. Y. Ekinci, H.H. Solak, J.F. Löffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104 (2008).
36. G.H. Chan, J. Zhao, G.C. Schatz, and R.P.V. Duyne, “Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles,” J. Phys. Chem. C 112, 13958-13963 (2008).
37. J. Hu, L. Chen, Z. Lian, M.Cao, H. Li, W. Sun, N. Tong, and H. Zeng, “Deep-Ultraviolet-Blue-Light Surface Plasmon Resonance of Al and Alcore/Al2O3shell in Spherical and Cylindrical Nanostructures,” J. Phys. Chem. C 116, 15584-15590 (2012).
38. G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H.L. Dai, M. Canepa, and F. Bisio, “Deep Ultraviolet Plasmon Resonance in Aluminum Nanoparticle Arrays,” ACS Nano. 7, 5834-5841 (2013).
39. C. Langhammer, M. Schwind, B. Kasemo, and I. Zoric, “Localized Surface Plasmon Resonances in Aluminum Nanodisks,” Nano Lett. 8, 1461 (2008).
40. Y. Ekinci, H. H. Solak, and C. David, “Extraordinary optical transmission in the ultraviolet region through aluminum hole arrays,”
Opt. Lett. 32, 172-174 (2007).
41. J. Martin, J. Proust, D. Gerard, and J. Plain, “Localized Surface Plasmon Resonances in the Ultraviolet From Large Scale Nanostructured Aluminum Films,” Opt. Mater. Express 3, 954-959 (2013).
42. K. Huang, N. Gao, C. Wang, X. Chen, J. Li, S. Li, X. Yang, and J. Kang, “Top- and bottom-emission-enhanced electroluminescence of deep-UV light-emitting diodes induced by localized surface plasmons,” Sci. Rep. 4, 4380 (2014).
43. N. Gao, K. Huang, J. Li, S. Li, X. Yang, and J. Kang, “Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells,” Sci. Rep. 2, 816 (2012).
44. C. Y. Cho, Y. J. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102, 211110 (2013).
45. S. Kalusniak, S. Sadofev, and F. Henneberger, “Negative refraction at telecommunication wavelengths through plasmon-photon hybridization,” Opt. Express 23, 30079-30087 (2015).
46. E.M. Purcell, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 681 (1946).
47. A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
48. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
49. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
50. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
51. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914-A929 (2011).
52. Y. Kuo, W. Y. Chang, C. H. Lin, C. C. Yang, and Y. W. Kiang, “Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating,” Opt. Express 23, 30709-30720 (2015).
53. C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22, A842-A856 (2014).
54. C. H. Lin, C. Y. Su, Y. Kuo, C. H. Chen, Y. F. Yao, P. Y. Shih, H. S. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles,” Appl. Phys. Lett. 105, 101106 (2014).
55. C. H. Lin, C. H. Chen, Y. F. Yao, C. Y. Su, P. Y. Shih, H. S. Chen, C. Hsieh, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Behaviors of surface plasmon coupled light-emitting diodes induced by surface Ag nanoparticles on dielectric interlayers,” Plasmonics 10, 1029-1040 (2015).
56. C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96, 261104 (2010).
57. C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23, 8150-8161 (2015).
58. K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Unique optical properties of AlGaN/AlGaN alloys and related ultraviolet emitters,” Appl. Phys. Lett. 84, 5264-5266 (2004).
59. J. E. Northrup, C. L. Chua, Z. Yang, T. Wunderer, M. Kneissl, N. M. Johnson, and T. Kolbe, “Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells,” Appl. Phys. Lett. 100, 021101 (2012).
60. H. Lu, T. Yu, G. Yuan, X. Chen, Z. Chen, G. Chen, and G. Zhang, “Enhancement of surface emission in deep ultraviolet AlGaN-based light emitting diodes with staggered quantum wells,” Opt. Lett. 37, 3693-3695 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50610-
dc.description.abstract本研究中,我們在氮化鋁鎵深紫外光量子井上面有123奈米的氮化鋁鎵覆蓋層上製作不同深度和夾有折射率較氮化鋁鎵低的介電質中間層之鋁突起陣列結構,將表面電漿子耦合效應應用在深紫外光量子井上,量測從低溫到室溫的垂直偏振和水平偏振方向的光激螢光頻譜,得出不同激發偏振方向的內部量子效率。因為重輕電洞能階和分裂價帶的能階差異很小,導致垂直偏振和水平偏振的內部量子效率增強比率並無顯著差異,相同的內部量子效率也可歸因於表面電漿子耦合效應會同時在不同偏振方向的躍遷中產生。本實驗中主要是利用高階共振模態的局域表面電漿子跟量子井來產生耦合效應。在量子井的發光波段的局域表面電漿子共振強度越高則會產生越強的激發光和更高的內部量子效率,同時隨著鋁突起結構尖端與量子井的距離增大會導致內部量子效率的增強效果逐漸減弱。我們利用鋁突起陣列結構產生的表面電漿子耦合效應可以有效提升氮化鋁鎵深紫外光量子井的內部量子效率,以改善深紫外光量子井發光特性。zh_TW
dc.description.abstractThe enhancement of internal quantum efficiency (IQE) of deep-ultraviolet (UV) AlxGa1-xN/AlyGa1-yN (x < y) quantum wells (QWs) by fabricating Al nano-protrusion arrays on a QW structure for inducing surface plasmon (SP) coupling is demonstrated. Through temperature-dependent photoluminescence (PL) measurement, the enhancements of IQE in different emission polarizations are illustrated. Due to the small difference in energy band level between the heavy/light hole and split-off valence bands, the IQEs of the transverse-electric- (TE-) and transverse-magnetic- (TM-) polarized emissions are about the same. With SP coupling, the similar IQEs between different polarizations can also be attributed to the simultaneous SP couplings of the TE- and TM-polarized transitions. The SP resonance mode for coupling with the QWs is dominated by higher-order localized surface plasmon (LSP). The strong LSP resonance at the excitation laser wavelength may lead to stronger excitation and hence higher IQE levels of the QWs. The IQE enhancement decreases with the distance between Al-protrusion tip and the QWs.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:48:38Z (GMT). No. of bitstreams: 1
ntu-105-R02941110-1.pdf: 3018088 bytes, checksum: 05c5b0be93e703e9ee76eb50b160577c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Contents iv
List of Figure vi
Chapter 1 Introduction 1
1.1 Surface Plasmons 1
1.1.1 Surface Plasmon Polaritons 1
1.1.2 Localized Surface Plasmons 4
1.1.3 Application of Surface Plasmon 6
1.2 Characteristics of an AlGaN Quantum Well 8
1.3 Coupling between an AlGaN QWs and Surface Plasmons 10
1.4 Nano imprint Lithography 12
1.5 Reasearch Motivation 14
1.6 Organization of the Thesis 16
Chapter 2 Sample Growth Conditions, Process Procedures, and Designation 23
Chapter 3 Optical Measurements 34
Chapter 4 Photoluminescence Measurement Results 40
Chapter 5 Discussions 53
Chapter 6 Conclusions 54
References 55
dc.language.isoen
dc.subject氮化鋁鎵zh_TW
dc.subject光激螢光頻譜zh_TW
dc.subject鋁突起結構尖端zh_TW
dc.subject內部量子效率zh_TW
dc.subject表面電漿子耦合效應zh_TW
dc.subject深紫外光量子井zh_TW
dc.subject表面電漿子耦合效應zh_TW
dc.subject氮化鋁鎵zh_TW
dc.subject內部量子效率zh_TW
dc.subject鋁突起結構尖端zh_TW
dc.subject深紫外光量子井zh_TW
dc.subject光激螢光頻譜zh_TW
dc.subjectphotoluminescence (PL)en
dc.subjectAlGaNen
dc.subjectdeep-ultraviolet quantum wells(DUV QWs)en
dc.subjectsurface plasmon (SP) couplingen
dc.subjectinternal quantum efficiency (IQE)en
dc.subjectAl nano-protrusion arraysen
dc.subjectphotoluminescence (PL)en
dc.subjectAlGaNen
dc.subjectdeep-ultraviolet quantum wells(DUV QWs)en
dc.subjectsurface plasmon (SP) couplingen
dc.subjectinternal quantum efficiency (IQE)en
dc.subjectAl nano-protrusion arraysen
dc.title利用鋁突起陣列結構產生表面電漿子耦合效果來提升氮化鋁鎵深紫外光量子井的發光效率zh_TW
dc.titleEnhancement of Emission Efficiency of Deep-ultraviolet AlGaN Quantum Wells through Surface Plasmon Coupling with an Al Protrusion Arrayen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋(Jian-Jang Huang),江衍偉(Yean-Woei Kiang),吳育任(Yuh-Renn Wu),吳肇欣(Chao-Hsin Wu)
dc.subject.keyword氮化鋁鎵,深紫外光量子井,表面電漿子耦合效應,內部量子效率,鋁突起結構尖端,光激螢光頻譜,zh_TW
dc.subject.keywordAlGaN,deep-ultraviolet quantum wells(DUV QWs),surface plasmon (SP) coupling,internal quantum efficiency (IQE),Al nano-protrusion arrays,photoluminescence (PL),en
dc.relation.page65
dc.identifier.doi10.6342/NTU201601180
dc.rights.note有償授權
dc.date.accepted2016-07-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved