請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50595
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林順福 | |
dc.contributor.author | Ssu-Yu Lin | en |
dc.contributor.author | 林思妤 | zh_TW |
dc.date.accessioned | 2021-06-15T12:47:54Z | - |
dc.date.available | 2021-07-26 | |
dc.date.copyright | 2016-07-26 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-22 | |
dc.identifier.citation | 王雲平。2005。豆類作物種間及種內基因體對應區域之DNA序列差異。國立臺灣大學農藝學研究所碩士論文。
曾一航。2007。豆類Adh基因之DNA序列變異研究。國立臺灣大學農藝學研究所碩士論文。 Amelia, K., Khor, C.Y., Shah, F.H., Bhore, S.J., 2015. Nucleotide sequence of Phaseolus vulgaris L. alcohol dehydrogenase encoding cDNA and three-dimensional structure prediction of the deduced protein. Pharmacognosy Res 7, 203. Baldwin, B.G., Sanderson, M.J., Porter, J.M., Wojciechowski, M.F., Campbell, C.S., Donoghue, M.J., 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Botanical Garden 82, 247-277. Bateman, A., Mifsud, W., 2005. Gene Families. Encycl Life Sci. doi: 10.1038/npg.els.0005045 CBOL Plant Working Group, 2009. A DNA barcode for land plants. Proc Natl Acad Sci U S A 106, 12794-12797. Chang, C., Meyerowitz, E.M., 1986. Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci USA 83, 1408-1412. Charlesworth, D., Liu, L., Zhang, L., 1998. The Evolution of the alcohol dehydrogenase gene family by loss of introns in plants of the genus Leavenworthia (Brassicaceae). Mol Biol Evol 15, 552-559. Choi, H.K., Luckow, M.A., Doyle, J., Cook, D.R., 2006. Development of nuclear gene-derived molecular markers linked to legume genetic maps. Mol Genet Genomics 276, 56-70. Clegg, M.T., Cummings, M.P., Durbin, M.L., 1997. The evolution of plant nuclear genes. Proc Natl Acad Sci USA 94, 7791-7798. Coissac, E., Hollingsworth, P.M., Lavergne, S., Taberlet, P., 2016. From barcodes to genomes: extending the concept of DNA barcoding. Mol Ecol 25, 1423-1428. Denda, T., Kosuge, K., Watanabe, K., Ito, M., Suzuki, Y., Short, P.S., Yahara, T., 1995. Intron length variation of the Adh gene in Brachyscome (Asteraceae). Plant Mol Biol 28, 1067-1073. Dennis, E. S., Gerlach, W. L., Pryor, A. J., Bennetzen, J. L., Inglis, A., Llewllyn, D., Sachs, M. M., Ferl, R. J., Peacock, W. J., 1984. Molecular analysis of the alcohol dehydrogenase (Adhl) gene of maize. Nucleic Acids Res 12(9), 3983-4000. Dennis, E. S., Sachs, M. M., Gerlach, W. L., Finnegan, E. J., Peacock, W. J., 1985. Molecular analysis of the alcohol dehydrogenase 2 (Adh2) gene of maize. Nucleic Acids Res 13(3), 727-743. DiMeglio, L.M., Staudt, G., Yu, H., Davis, T.M., 2014. A phylogenetic analysis of the genus Fragaria (strawberry) using intron-containing sequence from the ADH-1 gene. PLoS One 9, e102237. Doyle, J.J., Doyle, J.L., 1990. Isolation of plant DNA from fresh tissue. Focus 12, 13-15. Elliott, T.L., Davies, T. J., 2014. Challenges to barcoding an entire flora. Mol Ecol Resour 14, 883-891. Ferri, G., Alu, M., Corradini, B., Beduschi, G., 2009. Forensic botany: species identification of botanical trace evidence using a multigene barcoding approach. Int J Legal Med 123, 395-401. Fukuda, T., Yokoyama, J., Nakamura, T., Song, I.J., Ito, T., Ochiai, T., Kanno, A., Kameya, T., Maki, M., 2005. Molecular phylogeny and evolution of alcohol dehydrogenase (Adh) genes in legumes. BMC Plant Biol 5, 6. Galimberti, A., De Mattia, F., Losa, A., Bruni, I., Federici, S., Casiraghi, M., Martellos, S., Labra, M., 2013. DNA barcoding as a new tool for food traceability. Food Res Intl 50, 55-63. Gao, T., Yao, H., Song, J., Liu, C., Zhu, Y., Ma, X., Pang, X., Xu, H., Chen, S., 2010. Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J Ethnopharmacol 130, 116-121. Garvin, D.F., Weeden, N.F., Doyle, J.J., 1994. The reduced stability of a plant alcohol dehydrogenase is due to the substitution of serine for a highly conserved phenylalanine residue. Plant Mol Bio 26, 643-655. Good, A. G., Pelcher, L. E., Crosby, W. L., 1988. Nucleotide sequence of a complete barley alcohol dehydrogenase 1 cDNA. Nucleic Acids Res 16(14B), 7182. Gottlieb, L., 1982. Conservation and duplication of isozymes in plants. Science 216, 373-380. Hebert, P.D., Cywinska, A., Ball, S.L., deWaard, J.R., 2003. Biological identifications through DNA barcodes. Proc Biol Sci 270, 313-321. Hollingsworth, P.M., 2011. Refining the DNA barcode for land plants. Proc Natl Acad Sci U S A 108, 19451-19452. Hollingsworth, P.M., Graham, S.W., Little, D.P., 2011. Choosing and using a plant DNA barcode. PLoS One 6, e19254. Hu, K., 2006. Intron exclusion and the mystery of intron loss. FEBS Lett 580, 6361-6365. Innan, H., Tajima, F., TerauchiI, R., Miyashita, N.T., 1996. Intragenic recombination in the Adh locus of the wild plant Arabidopsis thalianu. Genet Soc Amer 143, 1761-1770. Kane, N., Sveinsson, S., Dempewolf, H., Yang, J.Y., Zhang, D., Engels, J.M., Cronk, Q., 2012. Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Amer J Bot 99, 320-329. Koch, M.A., Haubold, B., Mitchell-Olds, T., 2000. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17, 1483-1498. Li, D.Z., Gao, L.M., Li, H.T., Wang, H., Ge, X.J., Liu, J.Q., Chen, Z.D., Zhou, S.L., Chen, S.L., Yang, J.B., Fu, C.X., Zeng, C.X., Yan, H.F., Zhu, Y.J., Sun, Y.S., Chen, S.Y., Zhao, L., Wang, K., Yang, T., Duan, G.W., 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA 108, 19641-19646. Li, X., Yang, Y., Henry, R.J., Rossetto, M., Wang, Y., Chen, S., 2015. Plant DNA barcoding: from gene to genome. Biol Rev Camb Philos Soc 90, 157-166. Llewellyn, D., Finnegan, E., Ellis, J., Dennis, E., Peacock, W., 1987. Structure and expression of an alcohol dehydrogenase 1 gene from Pisum sativum (cv.“Greenfeast”). J Mol Biol 195, 115-123. Matton, D.P., Constabel, P., Brisson, N., 1990. Alcohol dehydrogenase gene expression in potato following elicitor and stress treatment. Plant Mol Biol 14, 775-783. Morton, B.R., Gaut, B.S., Clegg, D.M.T., 1996. Evolution of alcohol dehydrogenase genes in the palm and Grass families. Proc Natl Acad Sci USA 93, 11735-11739. Newmaster, S.G., Grguric, M., Shanmughanandhan, D., Ramalingam, S., Ragupathy, S., 2013. DNA barcoding detects contamination and substitution in North American herbal products. BMC Medicine 11, 222. Nock, C.J., Waters, D.L., Edwards, M.A., Bowen, S.G., Rice, N., Cordeiro, G.M., Henry, R.J., 2011. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol J 9, 328-333. Petersen, G., Seberg, O., 1998. Molecular characterization and sequence polymorphism of the alcohol dehydrogenase 1 gene in Hordeum vulgare L. Euphytica 102, 57-63. Potter, D., Luby, J.J., Harrison, R.E., 2000. Phylogenetic relationships among species of Fragaria (Rosaceae) inferred from non-coding nuclear and chloroplast DNA sequences. Syst Bot 25, 337. Preiszner, J., VanToai, T., Huynh, L., Bolla, R., Yen, H., 2001. Structure and activity of a soybean Adh promoter in transgenic hairy roots. Plant Cell Rpt 20, 763-769. Sang, T., 2002. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol Biol 37, 121-147. Sang, T., Donoghue, M.J., Zhang, D., 1997. Evolution of alcohol dehydrogenase genes in Peonies (Paeonia): phylogenetic relationships of putative nonhybrid species. Mol Biol Evol 10, 994-997. Small, R.L., 2004. Phylogeny of Hibiscus sect. Muenchhusia (Malvaceae) based on chloroplast rpL16 and ndhF, and nuclear ITS and GBSSI sequences. Syst Bot 29, 385-392. Small, R.L., Wendel, J.F., 2000. Copy number lability and evolutionary dynamics of the Adh gene family in diploid and tetraploid cotton (Gossypium). Genetics 155, 1913-1926. Stoeckle, M.Y., Gamble, C.C., Kirpekar, R., Young, G., Ahmed, S., Little, D.P., 2011. Commercial teas highlight plant DNA barcode identification successes and obstacles. Sci Rep 1, 42. Strommer, J., 2011. The plant ADH gene family. Plant J 66, 128-142. Tank, D.C., Sang, T., 2001. Phylogenetic utility of the glycerol-3-phosphate acyltransferase gene: evolution and implications in Paeonia (Paeoniaceae). Mol Phylogenet Evol 19, 421-429. Trick, M., Dennis, E.S., Edwards, K.J., Peacock, W.J., 1988. Molecular analysis of the alcohol dehydrogenase gene family of barley. Plant Mol Biol 11, 147-160. Wang, Z., Ye, S., Li, J., Zheng, B., Bao, M., Ning, G., 2011. Fusion primer and nested integrated PCR (FPNI-PCR): a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotechnol 11(1), 1-12. Wolfe, K.H., Sharp, P.M., Li, W.-H., 1989. Rates of synonymous substitution in plant nuclear genes. J Mol Evol 29, 208-211. Wolyn, D. J., Jelenkovic, G., 1990. Nucleotide sequence of an alcohol dehydrogenase gene in octoploid strawberry (Fragaria× ananassa Duch.). Plant Mol Biol 14(5), 855-857. Wu, J., Mizuno, H., Sasaki, T., Matsumoto, T., 2008. Comparative analysis of rice genome sequence to understand the molecular basis of genome evolution. Rice 1(2), 119-126. Xie, Y., Wu, R., 1989. Rice alcohol dehydrogenase genes: anaerobic induction, organ specific expression and characterization of cDNA clones. Plant Mol Biol 13, 53-68. Xie, Y., Wu, R., 1990. Molecular analysis of an alcohol dehydrogenase-encoding genomic clone (adh2) from rice. Gene 87, 185-191. Yang, K., Tian, Z., Chen, C., Luo, L., Zhao, B., Wang, Z., Yu, L., Li, Y., Sun, Y., Li, W., Chen, Y., Li, Y., Zhang, Y., Ai, D., Zhao, J., Shang, C., Ma, Y., Wu, B., Wang, M., Gao, L., Sun, D., Zhang, P., Guo, F., Wang, W., Li, Y., Wang, J., Varshney, R.K., Wang, J., Ling, H.Q., Wan, P., 2015. Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proc Natl Acad Sci USA 112, 13213-13218. Yokoyama, S., Harry, D.E., 1993. Molecular phylogeny and evolutionary rates of alcohol dehydrogenases in vertebrates and plants. Mol Biol Evol 10, 1215-1226. Yoshida, K., Miyashita, N. T., 2005. Nucleotide polymorphism in the Adh2 region of the wild rice Oryza rufipogon. Theo Appl Genet 111(6), 1215-1228. Zimmer, E.A., Wen, J., 2013. Reprint of: using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 66, 539-550. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50595 | - |
dc.description.abstract | 近年來DNA條碼被廣泛使用於親緣分析及物種鑑別上,不過目前使用之葉綠體及核醣體DNA條碼常無法區分植物親緣相近之物種,而為了補充現有植物DNA條碼解析度不足之問題,本研究先以紅豆品種間Adh基因序列變異為基礎,延伸至其他豆科物種,再試圖擴展至禾本科等其他作物,希望能推薦廣適用性高且高鑑別效能之DNA條碼。本研究首先成功地以FPNI-PCR方法擴增出紅豆Adh2基因全長(3826 bp),其DNA序列結構與大部分物種之Adh序列結構相符,皆含有10個exon、9個intron,exon在長度上十分保守,與其他物種Adh之相似度大多高於70%。而比對9個臺灣紅豆品種之Adh1及Adh2基因發現,Adh1基因在品種間不具多型性,Adh2基因則在品種間具有15個多型性位點,且這些多型性可將此9個臺灣品種區分為三群,由此推測Adh2基因應比Adh1基因更具種內區分之潛力,而後續豆科Adh DNA條碼擴增之結果也應證此推論。本研究共開發出四組Adh DNA條碼,分別針對豆科物種之Adh1、Adh2基因以及禾本科之Adh1基因進行增幅,在豆科方面以EX5F + EX7R引子對為佳,禾本科則以Mex2F + Mex4R引子對為主,此兩組分子標誌皆可以長度多型性區別不同物種,種內也具有定序多型性。整合此四組Adh DNA條碼之擴增結果,其均可有效地應用在物種層級之鑑別及親緣分析,而在種內之鑑別則依物種而異,此顯示本研究所開發之Adh DNA條碼確實可補充現今DNA條碼解析度不足之問題。此外,本研究亦發現相對同源(paralogs)及相鄰同源(orthologs) Adh基因難以判斷之問題,在文中也分析可能之原因及提供改善之方法,期望能對後續Adh基因之應用有所助益。 | zh_TW |
dc.description.abstract | Recently DNA barcodes have been applied worldwide in phylogeny analysis and species identification. However, chloroplast and nuclear ribosomal sequences, which are commonly used as plant DNA barcodes, usually can not distinguish close-related species. To complement the insufficient resolution of current plant DNA barcodes, we analyzed sequence variations of Adh genes among adzuki bean vatieties, and then extended to investigate leguminous and other gramineous species, hoping to develop high-resolution Adh DNA barcode for Leguminosae and Gramineae speciess. The Adh2 gene of adzuki bean was successfuly sequenced by the FPNI-PCR method. Its gene structure is similar to those of published Adh genes, including the number and the length of exons, and the similarity of coding region (above 70%). Adh1 and Adh2 genes of nine adzuki bean varieties developed in Taiwan were also sequenced and aligned. It suggested that the Adh2 gene had higher potential to distinguish plants within species. Based on the variations of Adh DNA sequences, we developed two Adh DNA barcodes to amplify Adh1 and Adh2 genes of leguminous species and additional two Adh DNA barcodes to amplify Adh1 genes of gramineous species. These Adh DNA barcodes were successfully used to reconstruct phylogenetic tree and identify plants at inter-species and intra-species level. These demonstrated that Adh DNA barcodes complete the DNA barcode system at low taxonomic level. In addition, we discovered that paralogous and orthologous Adh genes were constantly hard to be distinguished and these cause difficulties in phylogeny analysis and species identification. Therefore, the possible causes and improving methods were also discussed in this study. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:47:54Z (GMT). No. of bitstreams: 1 ntu-105-R03621109-1.pdf: 4260197 bytes, checksum: ee31822819a12078d2b16f5778f8dadd (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract iv 目錄 v 表目錄 vii 圖目錄 viii 第一章 前言 1 第二章 前人研究 3 一、葉綠體基因、核醣體基因及核內基因應用於植物DNA條碼 3 二、Adh基因之介紹 4 1. Adh之功能 4 2. Adh之演化 4 3. Adh DNA序列之結構 5 三、Adh基因應用於低分類階層之親緣分析6 第三章 材料與方法 8 一、試驗材料 8 二、DNA萃取 8 三、紅豆Adh2 DNA序列之擴增 8 1. 引子設計及聚合酶連鎖反應 8 2. 電泳分析與目標片段定序 9 3. 序列分析 16 四、紅豆Adh1序列之擴增及Adh2序列之確認 16 五、Adh DNA條碼之開發及親緣分析 17 第四章 結果 20 一、紅豆Adh基因之擴增及分析 20 1. 紅豆Adh2基因之擴增及品種間序列之比對 20 2. 紅豆Adh1基因之擴增及品種間之DNA序列比對 21 二、 跨科別物種間Adh基因之DNA序列比對 26 三、Adh1與Adh2 DNA序列之比對―以紅豆、大豆、玉米及水稻為例 30 四、Adh DNA條碼之開發及其擴增之結果 30 第五章 討論 39 一、紅豆Adh基因之擴增及品種間比對 39 1. 紅豆Adh2 DNA之擴增 39 2. 紅豆品種間Adh基因之差異 40 二、紅豆Adh1與Adh2基因間之關係 41 1. 紅豆Adh基因之數目 41 2. 紅豆Adh1及Adh2基因之判定(命名) 41 3. 紅豆Adh1與Adh2基因之演化 42 三、不同物種之Adh DNA序列分析以建立Adh DNA條碼 43 四、Adh DNA條碼分析不同物種之效果 44 五、Adh DNA條碼所面臨之困難及解決之道 47 1. 引子設計之困難 47 2. 相鄰同源/相對同源Adh基因間之混淆 47 3. Adh DNA條碼於DNA條碼體系之定位 48 4. 建立Adh DNA條碼資料庫之必要性 49 第六章 結論 50 參考文獻 51 | |
dc.language.iso | zh-TW | |
dc.title | Adh基因應用於豆科及禾本科物種之鑑別 | zh_TW |
dc.title | Application of Adh Genes in the Identification of
Leguminous and Gramineous Species | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 盧煌勝,葉茂生,黃永芬 | |
dc.subject.keyword | 酒精脫氫酵素(Adh),DNA 條碼,物種鑑別,親緣分析,豆科,禾本科, | zh_TW |
dc.subject.keyword | alcohol dehydrogenase (Adh),DNA barcode,species identification,phylogeny,Leguminosae,Gramineae, | en |
dc.relation.page | 54 | |
dc.identifier.doi | 10.6342/NTU201601235 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-22 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。