Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50594
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮河
dc.contributor.authorHsin-Wen Changen
dc.contributor.author張馨文zh_TW
dc.date.accessioned2021-06-15T12:47:51Z-
dc.date.available2017-07-26
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-22
dc.identifier.citation1. 行政院農業委員會(1992),水土保持手冊,中華水土保持學會。
2. 周必凡、李德基、羅德富、呂儒仁、楊慶溪(1991),泥石流防治指南,科學出版社,第96-108頁。
3. 林永偉(2015),模型試驗探討乾溼顆粒流之行為,國立台灣大學土木工程研究所,碩士論文。
4. 林炳森(1996),土石流災害防治工法之現場調查與分析研究,行政院國家科學委員會專題研究計畫成果報告,第10~19頁、第40~41頁。
5. 施瑋庭(2014),應用地工合成材加勁擋土牆防治土石流之研究,國立台灣大學土木工程研究所,碩士論文。
6. 連惠邦(1996),溪床堆積土體崩壞模式及其土石流化之研究,中華水土保持學報,第27卷,第3期,第175-183頁。
7. 連惠邦(2005),土石流防治工法之研究評估,行政院農委會水土保持局,第73-76頁。
8. 陳榮河、紀柏全(2010),模型邊坡試驗之因次分析,地工技術,第125期,第 7-14頁。
9. 黃宏斌(1991),土石流之發生模式探討,農業工程學報,第37卷,第4期,第35-47頁。
10. 詹錢登(2000),土石流概論,科技圖書股份有限公司。
11. 歐泰林(2004),台灣東、北、中區土石流特性之分析,國立台灣大學土木工程研究所,碩士論文。
12. 高橋保(1977),土石流ソ發生シ流動Sズ關エミ研究,京大防災研年報,第20號,B-2。
13. 蘆田和男、高橋保、道上正規(1983),河川ソ土砂災害シ對策,森北出版株式會社。
14. Adams, M., Nicks, J., Stabile, T., Wu, J., Schlatter, W., Hartmann, J. (2012), Geosynthetic reinforced soil integrated bridge system, Interim implementation guide, Report No. FHWA-HRT-11-026, Federal Highway Administration, Washington, D. C., USA.
15. ASTM D4595-11, Standard test method for tensile properties of geotextiles by the wide-width strip method, Annual Book of Standards Vol. 4.13, 40–50, ASTM International, West Conshohocken, PA, USA.
16. Brandl, H. (2011), Geosynthetics applications for the mitigation of natural disasters and for environmental protection, Geosynthetics International, Vol.18(6), 340-390.
17. Federal Highway Administration (2013), Composite behavior of geosynthetic reinforced soil mass, USA.
18. Fowze, J.S.M., Bergado, D.T., Soealump, S., Voottipreux, P., Dechasakulsom, M. (2012), Rain-triggered landslide hazards and mitigation measures in Thailand: from research to practice, Geotextiles and Geomembranes, Vol. 30, 50-64.
19. Gollin, D., Bowmanand, E., Shepley, P. (2015), Methods for the physical measurement of collisional particle flows, International Symposium on Geohazards and Geomechanics, Vol. 26, 160-166..
20. Johnson, A.M., Rodine, J.D. (1984), Debris flow, Slope Instability, 257-361.
21. Lueptow, R.M., Akonur, A., Shinbrot, T. (2000), PIV for granular flows, Experiment in Fluids, Vol. 28, 183-186.
22. Pham, T. (2009), Investigating composite behavior of geosynthetic-reinforced soil (GRS) mass, Ph.D. Dissertation, University of Colorado, Denver, USA.
23. PIV view2C/3C, User Manual (2006), version2.4. PIVTEC, Germany.
24. Raffel, M., Willert, C.E., Wereley, S., Kompenhans, J. (1998), Particle image velocimetry- A practical guide, Springer Verlag, Berlin.
25. Recio, J., Oumeraci, H. (2007), Effect of deformations on the hydraulic stability of coastal structures made of geotextile sand containers, Geotextiles and Geomembranes, Vol. 25, 278-292.
26. Robert, L. S., Raymond, J. K. (1978), Landslide: analysis and control, Specil Report 176, National Academy of Sciences, Washington, D. C., USA, 17-27.
27. Ronco, C., Oggeri, C., Peila, D. (2009), Design of reinforced ground embankments used for rockfall protection, Natural Hazards and Earth System Sciences, Vol. 9, 1189-1199.
28. Sarno, L., Papa, M. N., Tai, Y. C., Carravetta, A., Martino, R. (2014), A reliable PIV approach for measuring velocity profiles of highly sheared granular flows, Latest Trends in Engineering Mechanics, Structures, Engineering Geology, 134-141.
29. Strouth, A., Pritchard, M., Roche, D., VanBuskirk, C. (2012), Geosynthetics reinforced soil walls for debris barrier in Whistler, B.C., Geosynthetics, Vol. 30(4), 14-21.
30. Varnes, D. J. (1958), Landslides and engineering practice, Highway Research Board, Special Report 29, 20-27.
31. White, D. J., Take, W. A., Bolton, M. D. (2003), Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry, Geotechnique, Vol.53, No. 7, 619–631.
32. Yasuhara, K., Recio-Molina, J. (2007), Geosynthetic-wrap around revetment for shore protection, Geotextiles and Geomembranes, Vol. 25, 221-232.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50594-
dc.description.abstract本研究透過室內物理模型試驗模擬土石流衝擊地工織物加勁土(Geosynthetic-Reinforced Soil, GRS)壁壘(護岸)之情形。試驗過程中,透過質點影像速度法(Particle Image Velocimetry, PIV)分析土石流前端流速,及顆粒追蹤速度法(Particle Tracking Velocimetry, PTV)觀察特定質點的位移,並於坡趾處架設衝擊力量測裝置量測衝擊力,觀察壁壘受衝擊後之力學行為,且比較不同型式壁壘間的差異,以利整治土石流的參考。
首先,土石流模擬試驗考慮不同的土石流量體,由試驗結果可知,無論量體大小,其前端速度無顯著改變,然而,量體大者初始流速慢,但表面流速最終趨於一致,且經換算與現地土石流流速範圍相符。在衝擊力方面,土石流量體增加,對衝擊力歷時曲線型式影響不大。但量體增加時,最大衝擊力發生時間會隨之延緩,並導致衝擊力上升,然因流深變化的不同,單位面積所受之力並不一定與衝擊力成正比。此外,衝擊力量測裝置架設位置也會影響衝擊力大小,裝設在側邊之衝擊力約為中間處的0.9倍,且衝擊力消散所需之時間較長。
其次,進行土石流衝擊壁壘試驗,考慮加勁層以黏接式及回包式牆面之兩種型式壁壘,土石流受壁壘阻擋改變其流動方式,致使黏接式壁壘所受之正向力較大、剪力較小,造成受衝擊段之受力側凹陷及背力側凸出變形皆大於回包式壁壘,水面交界處之角隅破壞、磨損情形較嚴重。回包式壁壘屬較柔性結構,其基礎背力側有明顯的側向變形,反之,黏接式壁壘卻導致整體側移,但兩壁壘皆無漏土或整體性破壞,驗證GRS壁壘確實能發揮其加勁功用。
zh_TW
dc.description.abstractIn this study, a small-scale model test was conducted to simulate the impact of debris flow on reinforced-soil structures. Materials were selected according to similitude laws to simulate the particle size distribution of the material at a debris flow site (Fengchu) and the geosynthetics. During the test, the movement of the materials was recorded by three video cameras. The analyses of the front velocity and mean velocity for specific particles were performed by particle image velocimetry (PIV) and particle tracking velocimetry (PTV). Moreover, a device was set up at the toe of the slope for measuring the impact force from debris flow. The variations in velocity and impact force were studied in terms of different quantity of flow. The mechanic behavior of the barriers (revetments) and comparison between two types of barriers were discussed.
In the debris flow simulation test, flows of different quantities were considered. According to the physical test result, the variation in front velocity was not obvious. However, the quantity of flow had influence on the mean velocity. Although the initial mean velocity of large quality flow was slower, the mean velocities of flows with different quantities were almost the same. Regarding for the impact force, the quantity of flow had little influence on the pattern of time history. As the quantity of flow was increased, the maximum impact force increased as well; nevertheless, the impact force per unit area was not increased proportionally to the impact force. It was found that the impact force at the middle was larger than that at the side of the flow.
To measure the impact of debris flow on reinforced-soil structures, two types of barrier, wrap-around and glued facings, were taken into consideration. Based on the observation, the glued-facing barrier depressed more at the up-stream side and bulged more at the downstream side than the wrap-around barrier. After uncovering the embedded layer, the foundation of wrap-around barrier had significant lateral deformation at the downside; while the glued-facing barrier had small overall sideway movement. Both barriers did not have rupture of reinforcement or soil washed out, indicating the good function of the GRS barriers.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:47:51Z (GMT). No. of bitstreams: 1
ntu-105-R03521102-1.pdf: 29219011 bytes, checksum: 38d849c34b28b07c0a37738ac338268e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
符號說明 XIV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 研究內容 3
第二章 文獻回顧 5
2.1 土石流簡介 5
2.1.1 土石流定義與種類 5
2.1.2 土石流特性 6
2.1.3 土石流衝擊力 8
2.1.4 土石流危害方式 8
2.1.5 土石流災害案例 9
2.2 影像量測技術 9
2.3 加勁結構 10
2.3.1 河岸保護工 10
2.3.2 地工織物加勁土結構 11
2.3.3 加勁壁壘現地案例 12
第三章 模型試驗 26
3.1 模型相似性分析 26
3.2 材料基本性質 27
3.2.1 土石流模擬級配 27
3.2.2 壁壘模型材料 27
3.3 試驗設備 28
3.3.1 模型箱 28
3.3.2 量測設備 29
3.3.3 壁壘製作 30
3.4 試驗規劃 31
3.4.1 控制條件 31
3.4.2 試驗探討內容 31
3.5 試驗步驟 32
第四章 試驗結果與分析 51
4.1 土石流模擬試驗 51
4.2 土石流衝擊壁壘試驗-土石流端 52
4.2.1 土石流流動過程 52
4.2.2 土石流淘刷發展過程 53
4.2.3 土石流堆積型態 53
4.3 土石流衝擊壁壘試驗-壁壘端 54
4.3.1 牆面變形、牆頂沉陷 54
4.3.2 牆基淘刷 55
4.4 綜合討論 56
4.4.1 回包式與黏接式壁壘的力學行為 56
4.4.2 與前人研究結果比較 57
第五章 結論與建議 99
5.1 結論 99
5.1.1 土石流模擬試驗 99
5.1.2 土石流衝擊壁壘試驗 99
5.1.3 加勁壁壘可行性探討 100
5.2 建議 100
參考文獻 101
dc.language.isozh-TW
dc.subject土石流zh_TW
dc.subject模型試驗zh_TW
dc.subjectGRS壁壘zh_TW
dc.subject衝擊力zh_TW
dc.subject淘刷zh_TW
dc.subject模型試驗zh_TW
dc.subjectGRS壁壘zh_TW
dc.subject土石流zh_TW
dc.subject衝擊力zh_TW
dc.subject淘刷zh_TW
dc.subjectdebris flowen
dc.subjectGRS barrieren
dc.subjectimpact forceen
dc.subjectModel testen
dc.subjectscouringen
dc.subjectimpact forceen
dc.subjectdebris flowen
dc.subjectGRS barrieren
dc.subjectscouringen
dc.subjectModel testen
dc.title加勁護岸應用於土石流防治之模型試驗zh_TW
dc.titleModel Tests of Reinforced Revetments for Debris-Flow Controlen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林三賢,董家鈞
dc.subject.keyword模型試驗,GRS壁壘,土石流,衝擊力,淘刷,zh_TW
dc.subject.keywordModel test,GRS barrier,debris flow,impact force,scouring,en
dc.relation.page103
dc.identifier.doi10.6342/NTU201601238
dc.rights.note有償授權
dc.date.accepted2016-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
28.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved