Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50584
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林志民(Jim,Jr-Min Lin)
dc.contributor.authorLiang-Chun Linen
dc.contributor.author林亮君zh_TW
dc.date.accessioned2021-06-15T12:47:22Z-
dc.date.available2017-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-22
dc.identifier.citationR. Criegee, Angew. Chem. Int. Ed., 1975, 14, 745–752.
2 J. Li, Q. Ying, B. Yi and P. Yang, Atmos. Environ., 2013, 79, 442–447.
3 T. Liu, X. Wang, Q. Hu, W. Deng, Y. Zhang, X. Ding, X. Fu, F. Bernard, Z. Zhang, S. Lü, Q. He, X. Bi, J. Chen, Y. Sun, J. Yu, P. Peng, G. Sheng and J. Fu, Atmos. Chem. Phys. Discuss., 2015, 15, 23613–23649.
4 J. Hu and D. H. Stedman, Environ. Sci. Technol., 1995, 29, 1655–1659.
5 D. Cremer, J. Am. Chem. Soc., 1979, 101, 7199–7205.
6 R. L. Mauldin III, T. Berndt, M. Sipilä, P. Paasonen, T. Petäjä, S. Kim, T. Kurtén, F. Stratmann, V.-M. Kerminen and M. Kulmala, Nature, 2012, 488, 193–196.
7 O. Weltz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross and C. A. Taatjes, Science, 2012, 335, 204–207.
8 C. A. Taatjes, D. E. Shallcross and C. J. Percival, Phys. Chem. Chem. Phys., 2014, 16, 1704–18.
9 H.-Y. Lin, Y.-H. Huang, X. Wang, J. M. Bowman, Y. Nishimura, H. A. Witek and Y.-P. Lee, Nat. Commun., 2015, 6, 7012.
10 R. Chhantyal-Pun, A. Davey, D. E. Shallcross, C. J. Percival and A. J. Orr-Ewing, Phys. Chem. Chem. Phys., 2015, 17, 3617–3626.
11 D. Stone, M. Blitz, L. Daubney, N. U. M. Howes and P. Seakins, Phys. Chem. Chem. Phys., 2014, 16, 1139–1149.
12 O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee, A. M. Scheer, D. L. Osborn, D. Lowe, A. Murray Booth, P. Xiao, M. A. H. Khan, C. J. Percival, D. E. Shallcross and C. A. Taatjes, Angew. Chemie - Int. Ed., 2014, 53, 4547–4550.
13 A. B. Ryzhkov and P. A. Ariya, Chem Phys Lett, 2006, 419, 479–485.
14 A. B. Ryzhkov and P. A. Ariya, Chem Phys Lett, 2003, 367, 423–429.
15 J. M. Anglada, J. González and M. Torrent-sucarrat, Phys. Chem. Chem. Phys., 2011, 13, 13034–13045.
16 A. B. Ryzhkov and P. A. Ariya, Phys. Chem. Chem. Phys., 2004, 6, 5042–5050.
17 W. Chao, J. Hsieh, C. Chang and J. J. Lin, Science, 2015, 347, 751–754.
18 H.-L. Huang, W. Chao and J. J.-M. Lin, Proc. Natl. Acad. Sci., 2015, 112, 10857–10862.
19 L. Sheps, A. M. Scully and K. Au, Phys. Chem. Chem. Phys., 2014, 16, 26701–26706.
20 J. R. Barker, Int. J. Chem. Kinet., 2000, 232.
21 T. L. Nguyen and J. R. Barker, J. Phys. Chem. A, 2010, 114, 3718–3730.
22 Multiwell-2104.1, J. R. Barker, N. F. Ortiz, J. M. Preses, L. L. Lohr, A. Maranzana, P. J. Stimac, T. L. Nguyen and T. J. Dhilip Kumar, 2014.
23 F. Wang and D. P. Landau, 2001, 1–4.
24 W. Kohn, A. D. Becke and R. G. Parr, J. Phys Chem, 1996, 0, 12974–12980.
25 R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650.
26 M. J. Frisch, J. A. Pople and J. S. Binkley, J. Chem. Phys., 1984, 80, 3265.
27 D. J. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenb, 2009.
28 K. A. Peterson, D. E. Woon and T. H. Dunning, J. Chem. Phys., 1994, 100, 7410–7415.
29 T. H. Dunning, J. Chem. Phys., 1989, 90, 1007–1023.
30 R. A. Kendall, T. H. Dunning and R. J. Harrison, J Chem Phys, 1992, 96, 6796–6806.
31 J. Dunning T.H., K. a. Peterson and A. K. Wilson, J. Chem. Phys., 2001, 114, 9244–9253.
32 J. A Pople, M. Head-Gordon and K. Raghavachari, J. Chem. Phys., 1987, 87, 5968.
33 MOLPRO, H.-J. Werner, P. J. Knowles, F. R. Manby, M. Schütz, P. Celani, G. Knizia, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklaß, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang and A. Wolf, 2011.
34 L.-C. Lin, C.-H. Chang, W. Chao, M. C. Smith, C.-H. Chang, J. J. Lin and K. Takahashi, Phys. Chem. Chem. Phys., 2016, 18, 4557–4568.
35 H.-L. Huang, W. Chao and J. J.-M. Lin, Proc. Natl. Acad. Sci., 2015, 112, 10857–10862.
36 M. C. Smith, C.-H. Chang, W. Chao, L.-C. Lin, K. Takahashi, K. A. Boering and J. J.-M. Lin, J. Phys. Chem. Lett., 2015, 6, 2708–2713.
37 J. M. Beames, F. Liu, L. Lu, M. I. Lester, J. M. Beames, F. Liu, L. Lu and M. I. Lester, 2014, 244307.
38 C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn and C. J. Percival, Science, 2014, 340, 177.
39 L. Sheps, A. M. Scully and K. Au, Phys. Chem. Chem. Phys., 2014, 16, 26701–26706.
40 M. C. Smith, W.-L. Ting, C. Chun-Hung, K. Takahashi, K. A. Boering and J. J.-M. Lin, J. Chem. Phys., 2014, 141, 074302.
41 W. L. Ting, C. H. Chang, Y. F. Lee, H. Matsui, Y. P. Lee and J. J. M. Lin, J. Chem. Phys., 2014, 141, 104308.
42 M. C. Smith, C.-H. Chang, W. Chao, L.-C. Lin, K. Takahashi, K. A. Boering and J. J.-M. Lin, J. Phys. Chem. Lett., 2015, 6, 2708–2713.
43 B. Ruscic, J. Phys. Chem. A, 2013, 117, 11940–11953.
44 J. M. Anglada and A. Sole, Phys. Chem. Chem. Phys., 2016.
45 T. Berndt, R. Kaethner, J. Voigtländer, F. Stratmann, M. Pfeifle, P. Reichle, M. Sipilä, M. Kulmala and M. Olzmann, Phys. Chem. Chem. Phys., 2015, 17, 19862–19873.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50584-
dc.description.abstract本實驗中,我們以理論計算方法探討克里奇中間體與水的反應。克里奇中間體在大氣中是很強的氧化劑,許多研究指出大氣中的氫氧自由基、過氧化氫、硫酸以及氣膠的生成與克里奇中間體有很大的關聯性。除了氮氣氧氣以外,水氣在大氣中的含量相對於其他氣體是較高的,因此了解其與克里奇中間體反應動力學對我們了解克里奇中間體在大氣扮演的角色是很重要的。我們以RRHO (Rigid Rotor Harmonic Oscillator) 與VPT2 (second order vibrational perturbation theory) 計算分子系統的Vibrational partition function(震動配分函數). 同時,我們也考慮了Hindered rotor 在(H2O)2與CH3 低震動頻率的校正。就量子化學計算而言,我們試了三種方法計算分子系統的能量:B3LYP/6-311+G(2d,2p), QCISD(T)/aug-cc-pVTZ, and QCISD(T)/CBS (complex basis set extrapolation)。最後,我們也做了在不同溫度下反應動力學的研究,並了解水分子與其二聚體對於四種具不同取代基的克里奇中間體的競爭反應。除了理論計算部分,我們也做了anti-CH3CHOO 跟水的動力學實驗,因為anti-CH3CHOO 與水分子的反應很快,故水分子及其二聚體的競爭反應相當明顯。我們做了五個溫度:15, 25, 35, 45, 55 oC,利用MATLAB 曲面擬合可以得到 anti-CH3CHOO 與水分子及其二聚體的反應活化能。zh_TW
dc.description.abstractIn this work, we use theoretical calculation to understand the kinetics of Criegee intermediates (CIs) reactions with water vapor. CIs are strong oxidizing agents which play an important role of producing OH radical, H2O2, H2SO4, and secondary organic aerosol (SOA) in the atmosphere. Since water vapor is abundant in atmosphere, ([H2O]=1~8 × 1017 cm-3), compared to SO2 ([SO2]=1.2×1012 cm-3 at 50 ppb) and other trace gases), reaction kinetics of CIs with water vapor is important for us to understand the consumption of CIs in atmosphere. To obtain the rate coefficients accurately, we tested rigid rotor harmonic oscillator and second order vibrational perturbation theory method to calculate the vibrational partition function. In addition, hindered rotor is considered for the low vibrational frequency modes for (H2O)2 and CH3 internal rotation. We also use three quantum chemistry approaches: B3LYP/6-311+G(2d,2p), QCISD(T)/aug-cc-pVTZ, and QCISD(T) with complete basis set extrapolation (CBS) to calculate energies. We find that VPT2 partition function correction with QCISD(T)/CBS energies describes our system better than other methods. Lastly, we also study the temperature dependence of the reactions and understand the competition between water monomer and water dimer for the four CIs: CH2OO, anit/syn-CH3CHOO, and (CH3)¬2COO. Except for theoretical calculation, we also did the kinetics experiment on anti-CH3CHOO+(H2O)n. We found that water monomer reaction is very fast that we should consider both water dimer and water monomer in our experimental analysis. Furthermore, by using surface fit on five different temperature data in MATLAB, we can get the activation energies for both monomer and dimer reactions which are very hard to obtain by doing independent fitting for different temperature.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:47:22Z (GMT). No. of bitstreams: 1
ntu-105-R03223132-1.pdf: 2746152 bytes, checksum: a07fe5554a3f876926a3a034ed0ec269 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
摘要 i
Abstract ii
誌謝 iv
Chapter 1 Introduction 1
Chapter 2 Methodology 4
2.1 Theoretical Calculation 4
2.1.1 Transition State Theory 4
2.1.2 Reaction scheme 9
2.1.3 Rate coefficients calculation 10
2.1.4 VPT2 approximation 18
2.1.5 Hindered Rotor approximation 21
2.1.6 Quantum Chemistry calculation 22
2.2 Experimental setup 24
Chapter 3 Results 29
3.1 Geometry and electronic energy 29
3.1.1 CH2OO+(H2O)n 29
3.1.2 anti-CH3CHOO +(H2O)n 38
3.1.2 syn-CH3CHOO +(H2O)n 60
3.2 Proton transferring channels 65
3.3 Geometry optimization and zero point energy correction discussion 68
3.4 Rate coefficients calculation methods 72
3.4.1 CH2OO+(H2O)n 72
3.4.2 anti-CH3CHOO+(H2O)n 77
3.4.3 syn-CH3CHOO+(H2O)n 79
3.5 Hindered Rotation approximation 82
3.5.1 (H2O)2 HR 82
3.5.2 CH3 HR 84
3.6 Extension to (CH3)2CHOO+(H2O)n 86
Chapter 4 Discussion 90
4.1 Error discussion and Rate coefficient 90
4.1.1 Theoretical calculation part 90
4.1.2 Experiment part 93
4.2 Atmospheric implication 94
Chapter 5 Summary 100
Reference 102
dc.language.isoen
dc.subject理論計算zh_TW
dc.subject理論計算zh_TW
dc.subject統計熱力學zh_TW
dc.subject統計熱力學zh_TW
dc.subject反應速率zh_TW
dc.subject氣態化學zh_TW
dc.subject反應速率zh_TW
dc.subject氣態化學zh_TW
dc.subject動力學zh_TW
dc.subject動力學zh_TW
dc.subjecttheoretical calculationen
dc.subjectreaction kineticsen
dc.subjectreaction kineticsen
dc.subjecttheoretical calculationen
dc.subjectrate coefficienten
dc.subjectgas phase chemistryen
dc.subjectstatistical mechanicsen
dc.subjectrate coefficienten
dc.subjectstatistical mechanicsen
dc.subjectgas phase chemistryen
dc.title克里奇中間體與水的反應zh_TW
dc.titleCriegee intermediates reactions with water vaporen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.coadvisor高橋開人(Kaito Takahashi)
dc.contributor.oralexamcommittee李遠哲(Yuan-Tseh Lee),魏恆理(Henryk Witek),李祐慈(Elise Yu-Tzu Li)
dc.subject.keyword動力學,理論計算,統計熱力學,反應速率,氣態化學,zh_TW
dc.subject.keywordreaction kinetics,theoretical calculation,statistical mechanics,rate coefficient,gas phase chemistry,en
dc.relation.page104
dc.identifier.doi10.6342/NTU201601131
dc.rights.note有償授權
dc.date.accepted2016-07-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
2.68 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved