請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50561完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏家鈺(Jia-Yush Yen) | |
| dc.contributor.author | Shih-Hao Wang | en |
| dc.contributor.author | 王士豪 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:46:14Z | - |
| dc.date.available | 2021-08-03 | |
| dc.date.copyright | 2016-08-03 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-24 | |
| dc.identifier.citation | [1] Jain, Ramesh, Rangachar Kasturi, and Brian G. Schunck. Machine vision. Vol. 5. New York: McGraw-Hill, 1995.
[2] Forsyth, David A., and Jean Ponce. 'A modern approach.' Computer Vision: A Modern Approach (2003): 88-101. [3] Metta, Giorgio, Antonios Gasteratos, and Gulio Sandini. 'Learning to track colored objects with log-polar vision.' Mechatronics 14.9 (2004): 989-1006. [4] Manzotti, Riccardo, et al. 'Disparity estimation on log-polar images and vergence control.' Computer Vision and Image Understanding 83.2 (2001): 97-117. [5] Barnard, Stephen T., and William B. Thompson. 'Disparity analysis of images.'IEEE Transactions on Pattern Analysis and Machine Intelligence 4 (1980): 333-340. [6] Lazaros, Nalpantidis, Georgios Christou Sirakoulis, and Antonios Gasteratos. 'Review of stereo vision algorithms: from software to hardware.' International Journal of Optomechatronics 2.4 (2008): 435-462. [7] Mühlmann, Karsten, et al. 'Calculating dense disparity maps from color stereo images, an efficient implementation.' International Journal of Computer Vision47.1-3 (2002): 79-88. [8] Di Stefano, Luigi, Massimiliano Marchionni, and Stefano Mattoccia. 'A fast area-based stereo matching algorithm.' Image and vision computing 22.12 (2004): 983-1005. [9] Yoon, Kuk-Jin, and In So Kweon. 'Adaptive support-weight approach for correspondence search.' IEEE Transactions on Pattern Analysis and Machine Intelligence 28.4 (2006): 650-656. [10] Yoon, Sukjune, et al. 'Fast correlation-based stereo matching with the reduction of systematic errors.' Pattern Recognition Letters 26.14 (2005): 2221-2231. [11] Zach, Christopher, Konrad Karner, and Horst Bischof. 'Hierarchical disparity estimation with programmable 3D hardware.' (2004). [12] Bleyer, Michael, and Margrit Gelautz. 'A layered stereo algorithm using image segmentation and global visibility constraints.' Image Processing, 2004. ICIP'04. 2004 International Conference on. Vol. 5. IEEE, 2004. [13] Bleyer, Michael, and Margrit Gelautz. 'A layered stereo matching algorithm using image segmentation and global visibility constraints.' ISPRS Journal of Photogrammetry and Remote Sensing 59.3 (2005): 128-150. [14] Gutierrez, Salvador, and José Luis Marroquı́n. 'Robust approach for disparity estimation in stereo vision.' Image and Vision Computing 22.3 (2004): 183-195. [15] Hirschmuller, Heiko. 'Accurate and efficient stereo processing by semi-global matching and mutual information.' 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). Vol. 2. IEEE, 2005. [16] Veksler, Olga. 'Reducing Search Space for Stereo Correspondence with Graph Cuts.' BMVC. 2006. [17] Scharstein, Daniel, and Richard Szeliski. 'A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.' International journal of computer vision 47.1-3 (2002): 7-42. [18] Chang, Chun-Fa, et al. 'A hierarchical representation for image-based rendering.' Proceedings of ACM SIGGRAPH. 1999. [19] Chen, Shenchang Eric, and Lance Williams. 'View interpolation for image synthesis.' Proceedings of the 20th annual conference on Computer graphics and interactive techniques. ACM, 1993. [20] Lengyel, Jed. 'The convergence of graphics and vision.' Computer 31.7 (1998): 46-53. [21] Levoy, Marc, and Pat Hanrahan. 'Light field rendering.' Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, 1996. [22] Lippmann, Gabriel. 'Epreuves reversibles donnant la sensation du relief.' J. Phys. Theor. Appl. 7.1 (1908): 821-825. [23] Adelson, Edward H., and James R. Bergen. The plenoptic function and the elements of early vision. Vision and Modeling Group, Media Laboratory, Massachusetts Institute of Technology, 1991. [24] Bolles, Robert C., H. Harlyn Baker, and David H. Marimont. 'Epipolar-plane image analysis: An approach to determining structure from motion.'International Journal of Computer Vision 1.1 (1987): 7-55. [25] Tao, Michael W., et al. 'Depth from combining defocus and correspondence using light-field cameras.' Proceedings of the IEEE International Conference on Computer Vision. 2013. [26] Wanner, Sven, and Bastian Goldluecke. 'Variational light field analysis for disparity estimation and super-resolution.' IEEE transactions on pattern analysis and machine intelligence 36.3 (2014): 606-619. [27] Bigun, Josef. 'Optimal orientation detection of linear symmetry.' (1987): 433-438. [28] Hirschmüller, Heiko, Peter R. Innocent, and Jon Garibaldi. 'Real-time correlation-based stereo vision with reduced border errors.' International Journal of Computer Vision 47.1-3 (2002): 229-246. [29] Janoch, Allison, et al. 'A category-level 3d object dataset: Putting the kinect to work.' Consumer Depth Cameras for Computer Vision. Springer London, 2013. 141-165. [30] Ng, Ren, et al. 'Light field photography with a hand-held plenoptic camera.'Computer Science Technical Report CSTR 2.11 (2005): 1-11. [31] Lumsdaine, Andrew, and Todor Georgiev. 'Full resolution lightfield rendering.'Indiana University and Adobe Systems, Tech. Rep (2008). [32] Perwass, Christian, and Lennart Wietzke. 'Single lens 3D-camera with extended depth-of-field.' IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, 2012. [33] Criminisi, Antonio, et al. 'Extracting layers and analyzing their specular properties using epipolar-plane-image analysis.' Computer vision and image understanding 97.1 (2005): 51-85. [34] Yu, Yuan-Hui, and Chin-Chen Chang. 'A new edge detection approach based on image context analysis.' Image and Vision Computing 24.10 (2006): 1090-1102. [35] Ding, Lijun, and Ardeshir Goshtasby. 'On the Canny edge detector.' Pattern Recognition 34.3 (2001): 721-725. [36] Medina-Carnicer, Rafael, et al. 'A novel method to look for the hysteresis thresholds for the Canny edge detector.' Pattern Recognition 44.6 (2011): 1201-1211. [37] Bouman, Charles A., and Michael Shapiro. 'A multiscale random field model for Bayesian image segmentation.' IEEE Transactions on Image Processing3.2 (1994): 162-177. [38] He, Kaiming, Jian Sun, and Xiaoou Tang. 'Guided image filtering.' IEEE transactions on pattern analysis and machine intelligence 35.6 (2013): 1397-1409. [39] Kou, Fei, et al. 'Gradient Domain Guided Image Filtering.' IEEE Transactions on Image Processing 24.11 (2015): 4528-4539. [40] Tomasi, Carlo, and Roberto Manduchi. 'Bilateral filtering for gray and color images.' Computer Vision, 1998. Sixth International Conference on. IEEE, 1998. [41] Wanner, Sven, Stephan Meister, and Bastian Goldluecke. 'Datasets and Benchmarks for Densely Sampled 4D Light Fields.' VMV. 2013. [42] 'Blender Foundation,' [Online]. Available: www.blender.org. [43] Stanford Computer Graphics Laboratory, 'Stanford Light Field Archive,' 2008. [44] 'Lytro,' Lytro, Inc., 2011. [Online]. Available: http://www.lytro.com. [45] 'Dataset and Source Code, ' [Online]. Available: http://graphics.berkeley.edu/papers/Tao-DFC-2013-12/index.html. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50561 | - |
| dc.description.abstract | 隨著科技的日趨成熟,以及人們對於所處環境的認知需求,有關三維環境之場景深度估測,已然成為高度熱門的研究主題之一。近年來,隨著市場需求乃至於工業發展的興起,場景深度估測的研究領域更是擴展到了新的應用層面上,如民生需求的虛擬實境、機器人導航,以及工業生產線上品質管理的瑕疵檢測等。因此,本論文將使用影像處理技術,利用影像的二維空間資訊,發展出一套演算法,藉以偵測出景物之三維深度資訊。
本論文進行了三維場景表面重建之相關的文獻回顧,包括立體視覺以及光場攝影這兩個目前較為主流且基於影像的深度估測方式,最後以光場攝影為基礎,提出了一套場景深度估測方法。利用光場相機的四維光場資訊,擷取出一般傳統相機所無法獲得之不同視角的光線資訊,透過座標轉換,將能取得一系列的sub-aperture images以及 epipolar plane images。本論文所提之演算法結合了EPI分析與馬可夫隨機場(Markov Random Fields)之影像分割技術,並利用所設計的去雜訊流程來獲取深度資訊。最後,將本演算法應用於具有真實深度資訊以及其他在各種不同環境條件下之光場來源進行測試,根據均方誤差(MSE)之計算,並與其他演算法做比較,能夠顯示出本演算法擁有較佳的準確度與執行效率,亦能獲得與真實場景較為一致之深度結果。 | zh_TW |
| dc.description.abstract | With the progress of science and technology and people’s need for cognition about their surroundings, depth estimation has been a highly popular research topic for decades. In recent years, with the rise of market demand and industrial development, the research of depth estimation has even been extended to a variety of applications, such as visual reality, robot navigation, and the defect detection in the industrial production lines. In this thesis, the two dimensional spatial information of a sequence of images by image processing technology is utilized to develop a depth estimation algorithm.
The related studies of depth estimation are reviewed, including stereo vision and light field photography, the two main image-based depth estimation methods. This thesis focuses on the light field photography method. The four-dimensional light fields that are acquired from plenoptic camera can record much more light information coming from different directions, but the traditional camera can just contain a part of the light information. Via transformations, a sequence of images called sub-aperture images and epipolar plane images can be obtained. we use the 4D light field data to propose a depth estimation algorithm, combining epipolar plane image analysis and our denoising processing based on Markov Random Fields and LoG filter. In the results, it is shown that our proposal can obtain the consistent depth with the scene with higher accuracy and efficiency. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:46:14Z (GMT). No. of bitstreams: 1 ntu-105-R03522822-1.pdf: 4261729 bytes, checksum: 53da401bb2e29d059995dca56c36cbba (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目錄 iv 圖目錄 vi 表目錄 viii 第 1 章 導論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.2.1 立體視覺(Stereo Vision) 1 1.2.2 光場攝影(Light Field Photography) 5 1.3 論文架構 10 第 2 章 光學分析與理論基礎 12 2.1 Light Field and The Plenoptic Function 12 2.2 光場相機(Plenoptic Camera) 14 2.3 座標轉換 16 2.3.1 光場影像(Raw Image) 16 2.3.2 Sub-Aperture Images 18 2.3.3 Epipolar Plane Images 19 2.3.3.1 景物深度與斜率之相對關係 21 2.3.3.2 Limitation 23 第 3 章 本研究之深度估測演算法 25 3.1 局部深度估測 27 3.2 去雜訊處理 35 3.2.1 影像分割 35 3.2.2 多尺度分析(Multi-Scale Analysis) 40 3.2.3 去雜訊處理流程 51 3.3 引導影像濾波器 56 第 4 章 實驗結果 59 4.1 光場資料庫(Light Field Data Sets) 59 4.2 結果與討論 63 第 5 章 結論與未來展望 77 參考文獻 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 影像分割 | zh_TW |
| dc.subject | 深度估測 | zh_TW |
| dc.subject | 光場 | zh_TW |
| dc.subject | EPI分析 | zh_TW |
| dc.subject | 深度估測 | zh_TW |
| dc.subject | 光場 | zh_TW |
| dc.subject | EPI分析 | zh_TW |
| dc.subject | 影像分割 | zh_TW |
| dc.subject | EPI analysis | en |
| dc.subject | image segmentation | en |
| dc.subject | EPI analysis | en |
| dc.subject | light fields | en |
| dc.subject | depth estimation | en |
| dc.subject | light fields | en |
| dc.subject | image segmentation | en |
| dc.subject | depth estimation | en |
| dc.title | 基於四維光場之雜訊抑制深度估測方法 | zh_TW |
| dc.title | A Denoising Depth Estimation Algorithm
Based on 4D Light Fields | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉雅琴,李佳翰 | |
| dc.subject.keyword | 深度估測,光場,EPI分析,影像分割, | zh_TW |
| dc.subject.keyword | depth estimation,light fields,EPI analysis,image segmentation, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU201601273 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
