請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50550
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛人愷(Ren-Kae Shiue) | |
dc.contributor.author | Ta-Hung Tseng | en |
dc.contributor.author | 曾達宏 | zh_TW |
dc.date.accessioned | 2021-06-15T12:45:43Z | - |
dc.date.available | 2018-10-14 | |
dc.date.copyright | 2016-10-14 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-25 | |
dc.identifier.citation | 1. Health & Safety Executive, UK. (2003). Review of the performance of high strength steels used offshore.
2. World Wind Energy Association. (2015). World Wind Energy Report 2014. 3. Di, G.B. et al. (2008). “Present Production State and Development Tendency of Offshore Platform Steels”, Materials for Mechanical Engineering, 32(8), 1-3. 4. Nippon Steel & Sumitomo Metal Corporation. (2015). “Solution for Offshore Oil and Gas”. 5. Pohang Iron and Steel Company (2014). “Steel Plates”. 6. Nippon Steel & Sumitomo Metal Corporation. (2015). “Steel Plates”. 7. Reed-Hill, R.E. et al. (2010). “Physical Metallurgy Principles”, Cengage Learning, Stamford, USA. 8. Chipman, J. (1972). “Thermodynamics and phase diagram of the Fe-C system”, Metall. Trans., 3, 55-64. 9. Bhadeshia, H., and Honeycombe, R. (2011). “Steels: microstructure and properties: microstructure and properties (3rd edition)”, Butterworth-Heinemann, Oxford, UK. 10. Maalekian, M. “The Effects of Alloying Elements on Steels”, 2007. 11. 黃振賢(民89)。機械材料。台北縣:新文京。 12. Militzer, M. (2014). “Thermomechanical Processed Steels”, Comprehensive Materials Processing, 1, 191-216. 13. Kang, S.S. et al. (2012). “The effect of heat treatment on the mechanical properties of a low carbon steel (0.1%) for offshore structural application”, Proc. Inst. Mech. Eng. L J. Mater. Des. Appl., 226(3), 242-251. 14. Lu, J. et al. (2012). “Strengthening Mechanisms and their relative contributions to the yield strength of microalloyed steel”, Metall. Mater. Trans. A, 43 (9), 3043–61. 15. Krauss, G. (1999). “Martensite in steel: strength and structure”, Mat. Sci. Eng. A-Struct., 273-275, 40-57. 16. Mirzayev, D.A. et al. (1987). Fiz. Metal. Metalloved. 63(4), 764. 17. Speich, G.R., and Leslie, W.C. (1972). “Tempering of Steel”, Metall. Trans. B, 3, 1043-1054. 18. Speich, G.R. (1969). “Tempering of Low-Carbon Martensite”, Trans. TMS-AIME, 245, 2553-64. 19. Kurdjumov, G.V. (1967). Rev. Met. Mem. Soc., 64, 99-110. 20. Zhou, M. et al. (2011). “Relationship among microstructure and properties and heat treatment process of ultra-high strength X120 pipeline steel.” J. Iron Steel Res. Int., 18(3), 59-64. 21. Keh, A.S., and Leslie, W.C. (1963). “Recent Observations on Quench-Aging and Strain-Aging of Iron and Steel”, Materials Science Research, 1, 208-50. 22. Grange, R.A et al. (1977). “Hardness of Tempered Martensite in Carbon and Low-Alloy Steels”, Metall. Trans. A, 8A, 1775–87. 23. Hu, J. et al. (2013). “Structure–mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling.” Mat. Sci. Eng. A-Struct., 585, 197-204. 24. Yang, G. et al. (2013). “Effects of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel.” Mater. Design, 50, 102-107. 25. Stasko, R. et al. (2006). “Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel”, Mater. Charact., 56, 340-347. 26. Huang, D.H., and Thomas, G. (1977). “Metallography of Bainitic Transformation in Silicon Containing Steels”, Metall. Trans. A, 8(11), 1661-1674. 27. Bhadeshia, H. K. D. H., and Edmonds, D. V. (1979). “The bainite transformation in a silicon steel”, Metall. Trans. A, 10(7), 895-907. 28. Bhadeshia, H.K.D.H. (2001). “Bainite in steels: Transformations, microstructure, and properties (2nd edition)”, IOM Communications, London, UK. 29. Furuhara, T. (2012). “Carbide-containing bainite in steels”, in Elena Pereloma and Edmonds David V. (Eds.), Phase Transformations in Steels, Woodhead Publishing, UK, 417-35. 30. Hehemann, R.F. (1970). “The bainite transformation”, in Phase Transformations, Metals Park, OH, ASM, 397-432. 31. Spanos, G. et al. (1990). “A mechanism for the formation of lower bainite”, Metall. Trans. A, 21A, 1381-90. 32. Bramfitt, B. L., and Speer, J. G. (1990). “A perspective on the morphology of bainite” Metall. Trans. A, 21(3), 817-829. 33. Davis, C. L., and King, J. E. (1994). “Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence”, Metall. Mater. Trans. A, 25(3), 563-573. 34. Zhou, Y. et al. (2015). “Investigation on tempering of granular bainite in an offshore platform steel”, Mat. Sci. Eng. A-Struct., 626, 352-361. 35. Wang, B., and Lian, J. (2014). “Effect of microstructure on low-temperature toughness of a low carbon Nb-V-Ti microalloyed pipeline steel”, Mat. Sci. Eng. A-Struct., 592, 50-56. 36. Zhang, J. et al. (2012). “Effect of tempering temperature on microstructure and properties of E690 offshore plate steel”, J. Iron Steel Res. Int., 19(3), 67-72. 37. Isasti et al. (2014). “Microstructural features controlling mechanical properties in Nb-Mo microalloyed steels, part II: Impact toughness”, Metall. Mater. Trans. A, 45A, 4972-82. 38. Pense, A.W. and Stout, R.D. (1975). “Fracture toughness related characteristics at cryogenic temperature”, INCO, New York, USA. 39. Scheid, A. et al. (2016). “The microstructure effect on the fracture toughness of ferritic Ni-alloyed steels”, Mat. Sci. Eng. A-Struct., 661, 96-104. 40. Rodriguez-Ibabe, J.M. (2014). “Metallurgical aspects of the flat rolling process”, in “The Making, Shaping and Treating of Steel: Flat Products Volume”, AISE, Pittsburgh, USA. 41. Hu, J. et al. (2013). “Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling”, Mat. Sci. Eng. A-Struct., 585, 197-204. 42. Norsok standard M-120, 2000 (2008), “Materials data sheets for structural steel”, Norwegian Technology Center, Norway, 2008. 43. ASTM standard E112-13, 1955 (2013), “Standard Test Methods for Determining Average Grain Size”, ASTM International, West Conshohocken, PA, 2013, DOI: http://dx.doi.org/10.1520/E0112 44. 于傑,超高強度海洋用鋼熱處理性質之研究,國立台灣大學,台北市,中華民國105年7月。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50550 | - |
dc.description.abstract | 本實驗分別使用兩種符合Norsok S690Q規範之海洋用鋼,兩者主要的差距在於釩元素的有無。藉由調整回火溫度參數,測量其室溫及低溫之衝擊韌性、硬度變化,並且藉後續之金相觀察、破斷面觀察、電子背向散射繞射分析,調查不同回火溫度所造成的影響。研究結果顯示,未添加釩元素的直接淬火試片在低溫時的衝擊韌性不佳,在500 °C進行回火30分鐘則可以改善此狀況,但回火至660 °C時相較580 °C則不會使衝擊性質再有提升,而其硬度從580 °C開始隨著回火溫度提升也不會有明顯的下降。添加微量釩元素的直接淬火試片在低溫也能有良好的衝擊韌性,但回火至相同溫度對於低溫衝擊韌性所提升的量則較未添加釩元素的鋼材要少,而回火至660 °C時相較580 °C也沒有對性質再有提升。
此外,由顯微結構與電子背向散射繞射之結果可以發現,原本密集的麻田散鐵介面在回火後會變得稀疏,造成高角度介面的減少與整體介面角度的下降。與衝擊試驗結果做比較可以發現,回火後介面角度較低,但低溫衝擊韌性較好,顯示高角度介面對於衝擊性質的助益並不如性質較脆的麻田散鐵組織轉變成回火麻田散鐵組織明顯。此研究建立較完整的海洋用鋼之低溫衝擊韌性資訊以及金相、破斷面觀察等資料,可提供日後海洋用鋼的應用與發展所需。 | zh_TW |
dc.description.abstract | In this research, two kinds of S690Q offshore steel specimens which can be characterized by the alloying of vanadium were tempered at several temperatures between 500~660 °C. Mechanical properties including hardness and low-temperature toughness were tested, and they were also investigated by several techniques like SEM and EBSD. The results show that the direct-quenched specimen without vanadium condition was brittle at low temperature, and its toughness could be improved when tempered at 500 °C for 30 minutes. However, increasing the tempering temperature from 580 °C to 660 °C doesn’t improve the low-temperature toughness anymore. For the vanadium-alloyed specimen, the direct-quenched specimen was ductile at low temperature, and it could become more ductile after tempering. However, the benefits from tempering were less effective to the vanadium-alloyed steels. Tempering at the temperatures higher than 580 °C has little improvement in their low-temperature toughness properties.
It can be observed from the results of SEM and EBSD that the substructure of lath martensite generated in the water-quenched specimens loosened during tempering. It is accompanied by fewer high-angle boundaries and the decreased average boundary angle. Comparing with the results of fracture toughness tests, it can be discovered that the high-angle boundaries enhancement to fracture toughness is less effective than the benefits from the brittle martensite structure transforming to tempered martensite during tempering. This research includes detailed data of low-temperature toughness, SEM microstructure observations, fractured surface observations, and EBSD analyses, which may be useful in the future offshore steel studies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:45:43Z (GMT). No. of bitstreams: 1 ntu-105-R03527060-1.pdf: 13689898 bytes, checksum: 5c126b6b1ad82602c76d837ec0ae68a4 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 目 錄
中文摘要 I 英文摘要 II 目 錄 III 圖目錄 V 表目錄 VII 第一章 前言 1 第二章 文獻回顧 2 2-1 海洋用鋼簡介 2 2-2 合金成分的影響 3 2-3 製程的影響 5 2-4 微結構與性質 6 2-4-1 麻田散鐵的性質 6 2-4-2 變韌鐵的性質 11 2-5 其他相關研究 13 第三章 實驗方法與步驟 22 3-1 試片成分與處理 22 3-2 熱處理 22 3-3 試片命名 22 3-4 機械性質量測 23 3-4-1 微硬度測試 23 3-4-2 衝擊試驗 23 3-5 顯微結構觀察 23 3-5-1 金相觀察 23 3-5-2 EBSD 分析技術 24 3-5-3 破斷面觀察 24 3-6 JMatPro軟體模擬 24 第四章 結果與討論 29 4-1 金相顯微組織觀察 29 4-1-1 直接淬火試片之顯微組織觀察 29 4-1-2 回火試片之顯微組織觀察 30 4-2 微硬度測量 44 4-3 衝擊試驗與破斷面觀察 47 4-3-1 衝擊性質之測量 47 4-3-2 破斷面之觀察 48 4-4 EBSD之顯微組織分析 61 第五章 結 論 75 參考文獻 78 | |
dc.language.iso | zh-TW | |
dc.title | 兩種S690Q高強度海洋用鋼回火效應之研究 | zh_TW |
dc.title | The Effect of Tempering on Two S690Q High-strength Offshore Steels | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡履文(Leu-Wen Tsay),郭東昊(Dong-Hau Kuo) | |
dc.subject.keyword | 海洋用鋼,低溫衝擊韌性,顯微結構,直接水淬, | zh_TW |
dc.subject.keyword | Offshore steels,low-temperature toughness,microstructure,direct water quench, | en |
dc.relation.page | 80 | |
dc.identifier.doi | 10.6342/NTU201601151 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 13.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。