請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5054
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊宏(Jiun-Hong Chen) | |
dc.contributor.author | Fen-Han Hou | en |
dc.contributor.author | 侯棻涵 | zh_TW |
dc.date.accessioned | 2021-05-15T17:51:21Z | - |
dc.date.available | 2014-08-21 | |
dc.date.available | 2021-05-15T17:51:21Z | - |
dc.date.copyright | 2014-08-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-15 | |
dc.identifier.citation | Alvarado AS. 2000. Regeneration in the metazoans: why does it happen?. BioEssays 22(6): 578-590
Alvarado AS. 2006. Planarian Regeneration: Its End Is Its Beginning. Cell 124(2): 241-245 Antsiferova M and Werner S. 2012. The bright and the dark sides of activin in wound healing and cancer. J Cell Sci. 125: 3929-3937 Bely AE. 2010. Evolutionary Loss of Animal Regeneration: Pattern and Process. Integr. Comp. Biol. 50(4): 515-527 Brown KA, Pietenpol JA, Moses HL. 2007. A Tale of Two Proteins: Differential Roles and Regulation of Smad2 and Smad3 in TGF-β Signaling. J Cell Biochem 101(1): 9-33 Chablais F, Veit J, Rainer G, Jaźwińska A. 2011. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol 11:21 Chen YG, Lui HM, Lin SL, Lee JM, Ying SY. 2002. Regulation of cell proliferation, apoptosis, and carcinogenesis by activin. Experimental Biology and Medicine. 227(2): 75-87 Coutelis JB, Petzoldt AG, Speder P, Suzanne M, Noselli S. 2008. Left-right asymmetry in Drosophila. Semin Cell Dev Biol. 19(3): 252-262 DaCosta Byfield S, Major C, Laping NJ, Roberts AB. 2004. SB-505124 is a selective inhibitor of transforming growth factor-beta type I receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 65(3): 744-752 Davis AA, Matzuk MM, Reh TA. 2000. Activin A promotes progenitor differentiation into photoreceptors in rodent retina. Mol Cell Neurosci. 15(1): 11-21 de Kretser DM, Buzzard JJ, Okuma Y, O’Connor AE, Hayashi T, Lin SY, Morrison JR, Loveland KL, Hedger MP. 2004. The role of activin, follistatin and inhibin in testicular physiology. Mol Cell Endocrinol. 225(1-2): 57-64 Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, Han M, Muneoka K. 2010. Wound healing and blastema formation in regenerating digit tips of adult mice. Dev Biol 350(2): 301-310 Gavino MA, Wenemoser D, Wang IE, Reddien PW. 2013. Tissue absence initiates regeneration through Follistatin-mediated inhibition of Activin signaling. eLife 2: e00247 Gierer A, Berking A, Bode H, David CN, Flick K, Hansmann G, Schaller H, Trenkner E. 1972. Regeneration of hydra from reaggregated cells. Nat. New Biol. 239(91):98–101. Gilbert RWD, Vickaryous MK, Viloria-Petit A. 2013. Characterization of TGFβ Signaling During Tail Regeneration in the Leopard Gecko (Eublepharis macularius). Dev Dyn 242(7): 886-896 Gilchrist RB, Ritter LJ, Myllymaa S, Kaivo-Oja N, Dragovic RA, Hickey TE, Ritvos O, Mottershead DG. 2006. Molecular basis of oocyte-paracrine signaling that promotes granulosa cell proliferation. J Cell Sci. 119: 3811-3821 Goessling W and North TE. 2014. Repairing quite swimmingly: advances in regenerative medicine using zebrafish. Dis. Model Mech. 7(7): 769-776 Green JBA, New HV, Smith JC. 1992. Responses of embryonic xenopus cells to activin and FGF are separated by multiple does thresholds and correspond to distinct axes of the mesoderm. Cell. 71(5): 731-739 Guzel Y, Nur Sahin G, Sekeroglu M, Deniz A. 2014. Recombinant activin A enhances the growth and survival of isolated preantral follicles cultured three-dimensionally in extracellular basement matrix protein (matrigel) under serum-free conditions. Gynecol Endocrinol. 30(5): 388-391 Harrison CA, Gray PC, Vale WW, Robertson DM. 2005. Antagonists of activin signaling: mechanisms and potential biological applications. Trends Endocrinol Metab. 16(2): 73-78 Hubner G, Hu Q, Smola H, Werner S. 1996. Strong Induction of Activin Expression after Injury Suggests an Important Role of Activin in Wound Repair. Dev Biol 173: 490-498 Ishisaki A, Yamato K, Nakao A, Nonaka K, Ohguchi M, ten Dijke P, Nishihara T. 1998. Smad7 is an activin-inducible inhibitor of activin-induced growth arrest and apoptosis in mouse B cells. J Biol Chem. 273(38): 24293-24296 Jaźwińska A, Badakov R, Keating MT. 2007. Activin-βA Signaling Is Required for Zebrafish Fin Regeneration. Current Biology 17: 1390-1395 King RS and Newmark PA. 2012. The cell biology of regeneration. J Cell Biology 196(5): 553-562 Kizil C, Kaslin J, Kroehne V, Brand M. 2012. Adult neurogenesis and brain regeneration in zebrafish. Dev. Neurobiol 72: 429-461 Kojima I, Mogami H, Kawamura N, Yasuda H, Shibata H. 1993. Modulation of growth of vascular smooth muscle cells by activin A. Experimental Cell Research. 206(1): 152-156 Kuo DH, Weisblat DA. 2011. A new molecular logic for BMP-mediated dorsoventral patterning in the leech Helobdella. Curr Biol 21(15): 1282-1288 Liu QY, Niranjan B, Gomes P, Gomm JJ, Davies D, Coombes RC, Buluwela L. 1996. Inhibitory effects of activin on the growth and morphogenesis of primary and transformed mammary epithelial cells. Cancer Research. 56(5): 1155-1163 Marino FE, Risbridger G, Gold E. 2013. The therapeutic potential of blocking the activin signalling pathway. Cytokine Growth Factor Rev. 24(5): 477-484 McCarthy SA and Bicknell R. 1993. Inhibition of vascular endothelial cell growth by activin-A. Journal of Biological Chemistry. 268(31): 23066-23071 McCusker C and Gardiner DM. 2011. The axolotl model for regeneration and aging research: a mini-review. Gerontology 57: 565-571 Mochii M, Taniguchi Y, Shikata I. 2007. Tail regeneration in the Xenopus tadpole. Dev Growth Differ. 49(2): 155-161 Montgomery JR, Coward SJ. 1974. On the minimal size of a planarian capable of regeneration. Trans Am Mic Sci 93: 386–391. Morgan T. 1898. Experimental studies of the regeneration of Planaria maculata. Dev Genes Evol 7: 364–397. Munz B, Smola H, Engelhardt F, Bleuel K, Brauchle M, Lein I, Evans LW, Huylebroech D, Balling R, Werner S. 1999. Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. The EMBO Journal 18(19): 5205-5215 Nishihara T, Okahashi N, Ueda N. 1993. Activin A induces apoptotic cell death. Biochemical and Biophysical Research Communications. 197(2): 985-991 Petersen CP, Reddien PW. 2009. A wound-induced Wnt expression program controls planarian regeneration polarity. PNAS 106(40): 17061-17066 Poss KD, Wilson LG, Keating MT. 2002. Heart regeneration in zebrafish. Science 298: 2188-2190 Roberts-Galbraith RH, Newmark PA. 2013. Follistatin antagonizes Activin signaling and acts with Notum to direct planarian head regeneration. Proc Natl Acad Sci 110(4): 1363-1368 Rodriguez-Martinez G, Molina-Hernandez A, Velasco I. 2012. Activin A promotes neuronal differentiation of cerebrocortical neural progenitor cells. PLoS One. 7(8): e43797 Schmierer B and Hill CS. 2007. TGFβ-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol. 8(12): 970-982 Shibata N, Rouhana L, Agata K. 2010. Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians. Dev Growth Differ. 52(1): 27-41 Smith JC, Price BMJ, Nimmen KV, Huylebroeck D. 1990. Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature. 345(6277): 729-731 Togashi Y, Sakamoto H, Hayashi H, Terashima M, de Velasco MA, Fujita Y, Kodera Y, Sakai K, Tomida S, Kitano M, Ito A, Kudo M, Nishio K. 2014. Homozygous deletion of the activin A receptor, type IB gene is associated with an aggressive cancer phenotype in pancreatic cancer. Mol Cancer. 13(1): 126 Tsuchida K, Nakatani M, Yamakawa N, Hashimoto O, Hasegawa Y, Sugino H. 2004. Activin isoforms signal through type I receptor serine/threonine kinase ALK7. Mol Cell Endocrinol. 220(1-2): 59-65 Vogg MC, Owlarn S, Perez Rico YA, Xie J, Suzuki Y, Gentile L, Wu W, Bartscherer K. 2014. Stem cell-dependent formation of a functional anterior regeneration pole in planarians requires Zic and Forkhead transcription factors. Dev. Biol. 390(2): 136-148 Wankell M, Munz B, Hubner G, Hans W, Wolf E, Goppelt A, Werner S. 2001. Impaired wound healing in transgenic mice overexpressing the activin antagonist follistatin in the epidermis. The EMBO Journal 20(19): 5361-5372 Wenemoser D, Lapan SW, Wilkinson AW, Bell GW, Reddien PW. 2012. A molecular wound response program associated with regeneration initiation in planarians. Genes Dev. 26: 988-1002 Whitehead GG, Makino S, Lien CL, Keating MT. 2005. fgf20 is essential for initiating zebrafish fin regeneration. Science 310: 1957-1960 Xu PF, Houssin N, Ferri-Lagneau KF, Thisse B, Thisse C. 2014. Contstruction of a Vertebrate Embryo from Two Opposing Morphogen Gradients. Science 344(6179): 87-89 Yu L, Han M, Yan M, Lee EC, Lee J, Muneoka K. 2010. BMP Signaling Induces Digit Regeneration in Neonatal Mice. Development. 137(4): 551-559. Zhang M, Liu NY, Wang XE, Chen YH, Li QL, Lu KR, Sun L, Jia Q, Zhang L. 2011. Activin B Promotes Epithelial Wound Healing In Vivo through RhoA-JNK Signaling Pathway. PLoS ONE 6(9): e25143 Zhang Z and Ying SY. 1995. Expression of activins and activin receptors in human retinoblastoma cell line Y-79. Cancer Letters 89(2): 207-214 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5054 | - |
dc.description.abstract | 活化素(activin)屬於轉化生長因子-β (Transforming Growth Factor-β),已知與傷口癒合、發炎反應、細胞分裂及細胞凋亡等有密切關係。過去的研究發現,activin在老鼠的傷口癒合和斑馬魚的尾鰭再生都扮演著重要的腳色,當activin被抑制的時候,老鼠的傷口無法正常的癒合,還有斑馬魚的尾鰭也無法再生。再者,近期研究發現活化素的拮抗分子follistatin在渦蟲再生過程中的角色非常重要,因此,本研究想確認activin在無脊椎動物中對於再生的重要性。我們選用的模式動物為瓢體蟲Aeolosoma viride,牠是一種水生的環節動物,能在五天再生完成失去的頭部。本篇研究中發現,在A. viride頭部再生過程中,activin會大量的表現,activin receptor會集中表現在A. viride傷口的位置。接著,以activin/TGF-β的抑制劑 SB505124處理再生中的A. viride時,傷口癒合無法正常進行,且再生會被抑制。綜合以上實驗結果,我們推測activin/TGF-β在A. viride中可能透過傷口表皮癒合來影響再生。 | zh_TW |
dc.description.abstract | Activin, a TGFβ superfamily protein, is known to regulate cell proliferation, inflammation, apoptosis, regeneration, and wound healing. Previous researches demonstrated that activin is necessary for wound healing in mice and fin regeneration in zebrafish. Recently, follistatin has been linked to regeneration in planarians. In this research, we investigated the roles of activin in the wound healing of a small fresh water annelid, Aeolosoma viride. A.viride can fully regenerate the head within 5 days after amputation. The results showed activin expression is upregulated during regeneration and activin receptor is densely expressed at the wound site and the blastema. Furthermore, A. viride treated with a chemical inhibitor of activin/TGF-β, SB 505124, obviously inhibited wound healing and impaired regeneration. Therefore, we infer that activin/TGF-β signaling might mediate wound healing to affect anterior regeneration in A. viride. | en |
dc.description.provenance | Made available in DSpace on 2021-05-15T17:51:21Z (GMT). No. of bitstreams: 1 ntu-103-R01b41033-1.pdf: 2039185 bytes, checksum: 9988350e58a3d7f34b56d8b8c3d24afb (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv Introduction 1 Regeneration 1 Activin/TGF-β Signaling 2 Activin/TGF-β Signaling and Regeneration 3 Aeolosoma viride and Regeneration Research 4 Aim 5 Materials and Methods 6 Aeolosoma viride 6 Irradiation 6 RNA Extraction 6 Reverse Transcription 7 Gene Cloning 7 Synthesis of DIG-labeled Probes 8 In situ hybridization 8 Quantitative real-time PCR 9 Western Blot 9 Immunofluorescence 10 Results 12 Regeneration of Aeolosoma viride 12 Sequences of Avi-activin, Avi-follistatin and Avi-activin receptor 12 Activin/TGF-β expression profiles during early anterior regeneration 13 Activin/TGF-β expression in the epithelium of A. viride 13 Inhibition of activin/TGF-β signaling impairs regeneration 14 Inhibition of activin/TGF-β signaling disables wound healing 16 Discussion 17 References 21 Tables, Images and Figures 27 Table 1. Primers Used for cDNA Identification 27 Table 2. Primers Used for qRT-PCR Identification 28 Image 1. Map of primers and probes on complete Avi-activin sequence. 28 Image 2. Map of primers and probes on complete Avi-follistatin sequence. 28 Image 3. Map of primers and probes on complete Avi-activin receptor sequence. 29 Figure 1. Aeolosoma viride. 30 Figure 2. Sequence of Avi-activin. 32 Figure 3. Sequence of Avi-follistatin. 34 Figure 4. Sequence of Avi-activin receptor. 36 Figure 5. Expression profiles of Avi-activin, Avi-follistatin and Avi-activin receptor during early regeneration. 38 Figure 6. Expression patterns of Avi-activin, Avi-follistatin and Avi-activin receptor. 39 Figure 7. Immunohistochemistry of Activin in intact and regenerating A. viride. (A) 40 Figure 8. Effects of SB-505124 treatment on the regeneration of A. viride. 41 Figure 9. Cell proliferation in the regenerating tissue of A. viride with or without SB505124 treatment. 43 Figure 10. Effects of SB505124 treatment on wound closure. 45 Figure 11. Radiation effects on wound closure in A. viride. 46 | |
dc.language.iso | en | |
dc.title | 活化素/轉化生長因子β於瓢體蟲傷口癒合與早期頭部再生之研究 | zh_TW |
dc.title | Characterization of Activin/TGF-β Signaling in the Wound Healing and Early Anterior Regeneration of Aeolosoma viride | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 朱家瑩(Chia-Ying Chu),蔡七女(Chi-Neu Tsai),郭典翰(Dian-Han Kuo) | |
dc.subject.keyword | 再生,傷口癒合,活化素,轉化生長因子-β,瓢體蟲, | zh_TW |
dc.subject.keyword | Activin,TGF-β,regeneration,Aeolosoma viride,wound healing, | en |
dc.relation.page | 46 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2014-08-17 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf | 1.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。