Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50543
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭隆瀚
dc.contributor.authorHsin-Jung Leeen
dc.contributor.author李心容zh_TW
dc.date.accessioned2021-06-15T12:45:23Z-
dc.date.available2016-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-25
dc.identifier.citation[1] P. Franken, A. E. Hill, C. Peters, and G. Weinreich, 'Generation of optical harmonics,' Physical Review Letters, vol. 7, p. 118, 1961.
[2] J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, 'Interactions between light waves in a nonlinear dielectric,' Physical Review, vol. 127, p. 1918, 1962.
[3] T. Mizushima, H. Furuya, S. Shikii, K. Kusukame, K. Mizuuchi, and K. Yamamoto, 'Second harmonic generation with high conversion efficiency and wide temperature tolerance by multi-pass scheme,' Applied physics express, vol. 1, p. 032003, 2008.
[4] http://www.microvision.com/.
[5] http://www.sony.com/electronics/projector/mp-cl1.
[6] F. Fan, S. Turkdogan, Z. Liu, D. Shelhammer, and C.-Z. Ning, 'A monolithic white laser,' Nature nanotechnology, 2015.
[7] J. W. Goodman, Speckle phenomena in optics: theory and applications: Roberts and Company Publishers, 2007.
[8] D. S. Mehta, D. N. Naik, R. K. Singh, and M. Takeda, 'Laser speckle reduction by multimode optical fiber bundle with combined temporal, spatial, and angular diversity,' Applied optics, vol. 51, pp. 1894-1904, 2012.
[9] K. V. Chellappan, E. Erden, and H. Urey, 'Laser-based displays: a review,' Applied optics, vol. 49, pp. F79-F98, 2010.
[10] 吳瑞娟, '以溶膠-凝膠法製備鈮鉭酸鋰焦電薄膜感測元件之研究,' 碩士論文, 2001.
[11] http://www.almazoptics.com/LiTaO3.html.
[12] D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, et al., 'Enhancement of second‐harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,' Applied Physics Letters, vol. 37, pp. 607-609, 1980.
[13] H. Ito, C. Takyu, and H. Inaba, 'Fabrication of periodic domain grating in LiNbO 3 by electron beam writing for application of nonlinear optical processes,' Electronics Letters, vol. 27, pp. 1221-1222, 1991.
[14] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, 'First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation,' Applied Physics Letters, vol. 62, pp. 435-436, 1993.
[15] I. Camlibel, 'Spontaneous Polarization Measurements in Several Ferroelectric Oxides Using a Pulsed‐Field Method,' Journal of Applied Physics, vol. 40, pp. 1690-1693, 1969.
[16] K. Mizuuchi and K. Yamamoto, 'Harmonic blue light generation in bulk periodically poled LiTaO3,' Applied physics letters, vol. 66, pp. 2943-2945, 1995.
[17] L.-H. Peng, Y.-P. Tseng, K.-L. Lin, Z.-X. Huang, C.-T. Huang, and A.-H. Kung, 'Depolarization field mitigated domain engineering in nickel diffused lithium tentalate,' Applied Physics Letters, vol. 92, 2008.
[18]'https://www.google.com.tw/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=&url=http%3A%2F%2Foptipedia.info%2Flsource-index%2Flaser-index%2Fzero_laser%2Flaser-basic%2Ffreq-conversion%2F&psig=AFQjCNGSSQAC-_75eZi8XMZmZzkd4B8hqg&ust=1468041003484521.'
[19] J.-P. Meyn and M. Fejer, 'Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,' Optics letters, vol. 22, pp. 1214-1216, 1997.
[20] 張永昌, '鈮酸鋰準相位匹配倍頻轉換藍、綠光雷射之研製,' 國立台灣大學光電工程學研究所碩士論文, 2001.
[21] 楊鈞皓, '鉭酸鋰非線性光子晶體與鎳擴散波導之黃光雷射產生研究,' 國立臺灣大學電機資訊學院光電工程學研究所
碩士論文, 2014.
[22] P. D. G. D. Miller, Stanford University, 1998
[23] 林耀東, '鉭酸鋰非線性光子晶體雷射與其高溫製程,' 國立台灣大學光電工程學研究所碩士論文 2003.
[24] G. Boyd and D. Kleinman, 'Parametric interaction of focused Gaussian light beams,' Journal of Applied Physics, vol. 39, pp. 3597-3639, 1968.
[25] 'http://www.yingfeilaser.com/news/html/?134.html.'
[26] 'http://www.teema.org.tw/epaper/20090909/industrial013.html.'
[27] B. Thompson and E. Wolf, 'Two-beam interference with partially coherent light,' JOSA, vol. 47, pp. 895-902, 1957.
[28] E. Siegman, 'LASERS. New ed., 458-488,' ed: CA: University Science Books, 1986.
[29] S. J. Brosnan and R. L. Byer, 'Optical parametric oscillator threshold and linewidth studies,' IEEE Journal of Quantum Electronics, vol. 15, pp. 415-431, 1979.
[30] L. E. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, 'Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3,' JOSA B, vol. 12, pp. 2102-2116, 1995.
[31] 呂百達, '激光光學. 第三版. 第八章,' 北京:高等教育出版社, 2002.
[32] P. Yeh and A. Yariv, 'Photonics: optical electronics in modern communication,' vol, vol. 6, pp. 237-241, 2007.
[33] I.-N. Hu, 'Study of Short Cavity Optical Parametric Oscillator,' National Taiwan University,Graduate Institute of Photonics and Optoelectronics College of Electrical Engineering and Computer Science, 2008.
[34] 楊宗諭, '鎳擴散非線性光子晶體波導之寬頻綠光雷射技術研究,' 國立台灣大學光電工程學研究所碩士論文, 2015.
[35] B. Redding, M. A. Choma, and H. Cao, 'Speckle-free laser imaging using random laser illumination,' Nature photonics, vol. 6, pp. 355-359, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50543-
dc.description.abstract本篇論文以三大部分構成:準相位匹配、光參振盪器及雷射散斑原理的介紹、光參振盪器晶體及倍頻綠光晶體之設計,和光參振盪器頻譜分析、綠光倍頻實驗、寬頻綠光空間分布及雷射散斑量測。
理論的部分,由簡入繁地介紹了非線性頻率轉換、準相位匹配、基本的光參振盪器理論與散斑概述。接著在鉭酸鋰光參振盪器晶體週期設計的部分中,不同於以往單週期7.63 um 設計,設計出以三個週期7.63 um、7.64 um、7.65 um 的並聯方式,讓光束一次通過三個週期,並進行排列組合且週期和週期間有10 um 的狹縫;而倍頻綠光晶體極化反轉週期為5.495-9.845 um。
在光學測量的部分,利用薄平面鏡作為Fabry Perot 濾光鏡,使其作為光參振盪器的輸出鏡以產生梳狀的寬頻紅外光譜,並量測各種不同週期排列的頻譜,得到週期7.65_7.63_7.64 um 在132°C有最寬頻70 nm。接著利用寬頻紅外光通過多週期鉭酸鋰以產生寬頻綠光雷射,比較了不同方向入射及不同啁啾率(Chirp rate),得到PPLT SHG 1010 mm Long Short Long Short 有最寬頻47 nm。最後利用此寬頻綠光進行空間分布分析及散斑對比值(SC)的量測比較,得到寬頻綠光散斑對比值小於5%,成功開發出低同調光源。
zh_TW
dc.description.abstractThis thesis is organized into three parts : (a) the theory of quasi-phase matching, quasi-phase matched optical parametric oscillator (QPM OPO), and speckle (b) the design of transversely-displaced three-QPM structures in periodically poled LiTaO3 (PPLT) for constructing 1064nm broadband OPO laser and a multi-chirped PPLT device for generation of broadband green laser (c) implementation of a QPM-OPO system, second harmonic generation (SHG) experiment, spatial distribution of laser beam intensify and speckle reduction with broadband green lasers.
First, the theory of QPM, OPO and speckle is introduced in chapter 2, chapter 3 and chapter 4. In the second part, the designed periods of PPLT is introduced. A 532 nm nano-second laser pumped 1064 nm broadband OPO is achieved by simultaneously the exciting tri-QPM structures in parallel with each periodicity of 7.63, 7.64, and 7.65 um, respectively, and 200 um width and 10 um spacing. The chirped periods for constructing broadband green lasers is from 5.495 to 9.845 um.
Finally, based on the Fabry Perot effect, a thin flat is used as the output mirror for the OPO to construct a broadband infrared frequency comb. The output OPO spectrum for the period 7.65_7.63_7.64 um design has the largest spectral bandwidth of 70 nm at 132°C. The IR combs are then used as fundamental source to pass through the multi-period chirped PPLT for generate of broadband green lasers. For comparison, pumping from two different directions and two different chirp rate are studied. The output spectrum for PPLT-SHG 1010 mm Long Short Long Short sample gets the broadest bandwidth of 47 nm. Moreover, using this broadband green laser to implement the analysis of spatial distribution and speckle. The resulting of speckle contrast ratio below 5% by engineering the low temporal-and-spatial coherence of the laser source.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:45:23Z (GMT). No. of bitstreams: 1
ntu-105-R03941002-1.pdf: 4739277 bytes, checksum: e1e1be7837c87dd037400fdf98b57fd8 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
附圖目錄 VI
附表目錄 XI
第一章 緒論 1
1.1 研究背景及動機 1
1.2 非線性晶體的比較與選擇 4
1.3 鉭酸鋰晶體介紹 5
1.3.1 基本特性 5
1.3.2 鉭酸鋰的鐵電相 6
1.3.3 鉭酸鋰的焦電現象 7
1.3.4 鉭酸鋰的電光效應 7
1.3.5 鉭酸鋰晶體的摻雜 8
1.4 週期性區域反轉之製作方式 9
1.4.1 淺層反轉混合高電壓致極化反轉法 9
1.5 非線性頻率轉換技術 10
1.5.1 和頻產生 10
1.5.2 差頻產生 10
1.5.3 倍頻產生 10
1.5.4 光學參量震盪器 11
第二章 模擬分析和製程 12
2.1 準相位匹配週期之設計 12
2.1.1 倍頻週期設計 12
2.1.2 光參振盪器晶體週期設計 14
2.2 高電壓極化反轉製作週期性結構之實驗架構 16
2.2.1 高電壓極化反轉實驗架構[20] 16
2.2.2 液態電極與夾具設計 17
2.2.3 電極的定義方式 18
2.2.4 極化反轉模型與高電壓波形 18
2.3 厚片週期性極化反轉鉭酸鋰製程 20
2.3.1 OPO PPLT 光參振盪器晶體製程方式與結果 20
2.3.2 SHG PPLT 倍頻晶體製程方式與結果 25
2.3.3 晶體研磨拋光 26
第三章 頻率轉換與光參振盪器理論 29
3.1 非線性頻率轉換與相位匹配 29
3.1.1 二倍頻 30
3.1.2 平面波近似 31
3.1.3 高斯波近似 32
3.2 一維空間的準相位匹配 34
3.3 光參產生和光參共振之理論 38
3.3.1 傳統光參產生及準相位匹配光參產生 38
3.3.2 波長可調性 39
3.3.3 光參產生細部理論 40
3.3.4 光參振盪理論 42
第四章 散斑 44
4.1 散斑現象 44
4.2 降低時間同調(Temporal Coherence)[7] 46
4.3 降低空間同調(Spatial Coherence) 47
第五章 光學測量與分析 50
5.1 光學測量之前置作業 50
5.1.1 泵浦雷射 50
5.1.2 共振腔設計與模態匹配 51
5.1.3 Fabry–Pérot Etalon之模態計算 55
5.1.4 溫控系統製作 58
5.2 光參振盪器架設與表現 59
5.2.1 光參振盪器架設 59
5.2.2 光參振盪器的表現及分析 63
5.3 倍頻實驗的架設與分析 70
5.3.1 倍頻實驗架構與晶體週期設計 70
5.3.2 寬頻綠光效率與頻譜表現 71
5.4 空間圖樣分析 79
5.4.1 空間分布分析及光強調變率(visibility,μ)分析 79
5.4.1 狹縫的影響 84
5.5 散斑量測與分析 90
5.5.1 KTP及頻寬散斑量測 90
5.5.2 1951 USAF Targets 拍攝與比較 96
5.6 結論 100
5.7 未來展望 100
參考資料 101
dc.language.isozh-TW
dc.title低同調雷射光源技術研究與應用zh_TW
dc.titleStudy of low-coherence laser source and its applicationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王維新,孔慶昌,賴志明,蔡宛卲
dc.subject.keyword低同調雷射,散斑,zh_TW
dc.subject.keywordLow coherence,Speckle,en
dc.relation.page104
dc.identifier.doi10.6342/NTU201601199
dc.rights.note有償授權
dc.date.accepted2016-07-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
4.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved