Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50529
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor段維新(Wei-Hsing Tuan)
dc.contributor.authorMeng-Chang Wuen
dc.contributor.author吳孟璋zh_TW
dc.date.accessioned2021-06-15T12:44:44Z-
dc.date.available2017-08-02
dc.date.copyright2016-08-02
dc.date.issued2015
dc.date.submitted2016-07-25
dc.identifier.citationReferences
[1] A. Sawa, “Resistive switching in transition metal oxides,” Materials Today, Vol.11, No.6, pp.28-36, 2008
[2] H. H. Wang, F. Chen, S. Y. Dai, T. Zhao, H. B. Lu, D. F. Cui, Y. L. Zhou, Z. H. Chen, and G. Z. Yang, “Sb-doped SrTiO3 transparent semiconductor thin films,” Applied Physics Letters, Vol.78, No.12, pp.1676-1678, 2001
[3] N. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.- M. Triscone, and J. Mannhart, “Superconducting Interfaces between Insulating Oxides,” Science, Vol.317, No.5842, pp.1196-1199, 2007
[4] J. A. Bert , B. Kalisky , C. Bell , M. Kim, Y. Hikita , H. Y. Hwang, and K. A. Moler, “Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface,” Nature Physics, Vol.7, No.10, pp.767-771, 2011
[5] H. Shen, Y. Song, H. Gu, P. Wang, and Y. Xi, “A high-permittivity SrTiO3-based grain boundary barrier layer capacitor material single-fired under low temperature,” Materials Letters, Vol.56, No.5, pp.802-805, 2002
[6] V. Ravikumar, R. P. Rodrigues, and V. P. Dravid, “An investigation of acceptor-doped grain boundaries in SrTiO3,” Journal of Physics D-Applied Physics, Vol.29, No.7, pp.1799-1806, 1996
[7] R.Konta, T. Ishii, H. Kato, and A. Kudo, “Photocatalytic Activities of Noble Metal Ion Doped SrTiO3 under Visible Light Irradiation,” Journal of Physical Chemistry B, Vol.108, No.26, pp.8992-8995, 2004
[8] M. Miyauchi, M. Takashio, and H. Tobimatsu, “Photocatalytic Activity of SrTiO3 Codoped with Nitrogen and Lanthanum under Visible Light Illumination,” Langmuir, Vol.20, No.1, pp.232-236, 2004
[9] D. Dimos and C. H. Mueller, “Perovskite thin films for high-frequency capacitor applications,” Annual Review of Materials Science, Vol.28, pp.397-419, 1998
[10] F. liu, X. Y. Liu, C. L. Yaun, T. Yang, G. H. Chen, and C. R. Zhou, “Crystal Structure and dielectric properties of (1-x)SrTiO3 -xCa0.4Sm0.4TiO3 ceramic system at microwave frequencies,” Materials Chemistry and Physics, Vol.148, pp.1083-1088, 2014
[11] M. Baurer, H. Kungl, and M. J. Hoffmann, “Influence of Sr/Ti Stoichiometry on the Densification Behavior of Strontium Titanate,” Journal of American Ceramic Society, Vol.92, No.3, pp.601-606, 2009
[12] D. W. Richerson, “Modern Ceramic Engineering, properties, processing and use in design, 1st ed.,” Mercel Dekker, Inc., New York, 1982
[13] T. Leisegang, H. Stocker, A. A. Levin, T. Weibbach, M. Zschornak, E. Gutmann,K. Rickers, S. Gemming, and D. C. Meyer, “Switching Ti Valence in SrTiO3 by a dc Electric Field,” Physical Review Letters, Vol.102, 087601(4), 2009
[14] M. Baurer, D. Weygand, P. Gumbsch, and M.J. Hoffmann, “Grain growth anomaly in strontium titanate,” Scripta Materialia, Vol.61, pp.584-587, 2009
[15] W. Xuewen, Z. Zhiyong, and Z. Shuixian, “Preparation of nano-crystalline SrTiO3 powder in sol-gel process,” Materials Science and Engineering B, Vol.86, pp.29-33, 2001
[16] D. Chen, X. L. Jiao, and M.S. Zhang, “Hydrothermal synthesis of strontium titanate powders with nanometer size derived from different precursors,” Journal of the European Ceramic Society, Vol.20, pp.1261-1265, 2000
[17] Y. C. Liou, C. T. Wu, and T. C. Chung, “Synthesis and microstructure of SrTiO3 and BaTiO3 ceramics by a reaction-sintering process,” Journal of Material Science, Vol.42, pp.3580-3587, 2007
[18] B. S. Patra, S. Otta, and S. D. Bhattamisra, “A kinetic and mechanistic study of thermal decomposition of strontium titanyl oxalate,” Thermochimica Acta, Vol.441, pp.84-88, 2006
[19] Y.B. Zhang, L. Zhong, and D.P. Duan, “A single-step direct hydrothermal synthesis of SrTiO3 nanoparticles from crystalline P25 TiO2 powders,” Journal of Material Science, Vol.51, pp.1142-1152, 2016
[20] T. Klaytae and S. Thountom, “Microstructure and dielectric properties of ST ceramics prepared by the sol–gel combustion technique with chitosan addition,” Ceramics International, Vol.41, pp.117-122, 2015
[21] A. M. Herrera, V. M. O. Medina, M. A. C. Rivera, E. H. Rodriguez, M. Z. Torres, E. C. Gonzalez, A. G. Cervantes, O. Z. Angel, and M. M. Lira, “A novel solvothermal route for obtaining strontium titanate nanoparticles,” Journal of Nanoparticle Research, 15:1525, 2013
[22] W. Rheinheimer, M. Baurer, H. Chien, G. S. Rohrer, C. A. Handwerker, J. E. Blendell, and M. J. Hoffmann, “The equilibrium crystal shape of strontium titanate and its relationship to the grain boundary plane distribution,” Acta Materialia, Vol.82, pp.32-40, 2015
[23] L. Amaral, M. Fernandes, I. M. Reaney, M. P. Harmer, A. M. R. Senos, and P. M. Vilarinho, “Grain Growth Anomaly and Dielectric Response in Ti-rich Strontium Titanate Ceramics,” Journal of Physics Chemistry C, Vol.117, pp.24787-24795, 2013
[24] C. Bae, J. G. Park, and Y.H. Kim, “Abnormal Grain Growth of Niobium-Doped Strontium Titanate Ceramics,” Journal of American Ceramic Society, Vol.81, No.11, pp.3005-3009, 1998
[25] S. Y. Chung and S. J. L. Kang, “Intergranular amorphous films and dislocations-promoted grain growth in SrTiO3,” Acta Materialia, Vol.51, pp.2345-2354, 2003
[26] S. J. Shih, S. Lozano-Perez, and D. J. H. Cockayne, “Investigation of grain boundaries for abnormal grain growth in polycrystalline SrTiO3,” Journal of Material Research, Vol.25, No.2, pp.260-265, 2009
[27] J. E. Burke and D. Turnbull, “Recrystallization and grain growth,” Progress in Metal Physics, Vol.3, pp.220-292, 1952
[28] W. Rheinheimer and M. J. Hoffmann, “Non-Arrhenius behavior of grain growth in strontium titanate: New evidence for a structural transition of grain boundaries,” Scripta Materialia, Vol.101, pp.68-71, 2015
[29] K. Gomann, G. Borchardt, A. Gunhold, W. Maus-Friedrichs, and H. Baumann, “Ti diffusion in La-doped SrTiO3 single crystals,” Physcal Chemistry Chemical Physics, Vol.6, pp.3639-3644, 2004
[30] K. Gomann, G. Borchardt, M. Schulz, A. Gomann, W. Maus-Friedrichs, B. Lesage, O. Kaıtasov, S. Hoffmann-Eiferte, and T. Schnellerf, “Sr diffusion in undoped and La-doped SrTiO3 single crystals under oxidizing conditions,” Physcal Chemistry Chemical Physics, Vol.7, pp.2053-2060, 2005
[31] L. Amaral, A. M.R. Senos, and P. M. Vilarinho, “Sintering kinetic studies in nonstoichiometric strontium titanate ceramics,” Materials Research Bulletin, Vol.44, pp.263-270, 2009
[32] S. N. Ruddlesden and P. Popper, “The compound Sr3Ti2O7 and its structure,” Acta Crystallographica, Vol. 11, pp.54-55, 1958
[33] S. Kamba, P. Samoukhina, F. Kadlec, J. Pokorny, J. Petzelt, I. M. Reaney, and P. L. Wise, “Composition dependence of the lattice vibrations in Srn+1TinO3n+1 Ruddlesden–Popper homologous series,” Journal of the European Ceramic Society, Vol.23, pp.2639-2645, 2003
[34] D. A.H. Hanaor and C. C. Sorrell, “Review of the anatase to rutile phase transformation,” Journal of Material Science, Vol.46, pp.855-874, 2011
[35] D. Reyes-Coronado , G. Rodrıguez-Gattorno , M. E. Espinosa-Pesqueira , C. Cab, R. de Coss, and G. Oskam, “Phase-pure TiO2 nanoparticles: anatase, brookite and rutile,” Nanotechnology, 145605, 2008
[36] A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M.Ischia, R. Ceccato, and L. Palmisano, “Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.317, pp.366-376, 2008
[37] B. V. Beznosikov and K. S. Aleksandrov, “Perovskite-Like Crystals of the Ruddlesden–Popper Series,” Crystallography Reports, Vol.45, No.5, pp.792-798, 2000
[38] JCPDS file, No. 39-1471
[39] JCPDS file, No. 11-0663
[40] JCPDS file, No. 22-1444
[41] A. J. Moulson and J. H. Herbert, “Electroceramics-Materials, Properties, applications,” Chapman and Hall, London, 1990
[42] S. Saha, T. P. Sinha, and A. Mookerjee, “Structural and optical properties of paraelectric SrTiO3,” Journal of Physics: Condensed Matter, Vol.12, pp.3325-3336, 2000
[43] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Introduction to Ceramics, 2nd,” John Wiley & Sons, New York, 1976
[44] L. Li and X. M. Chen, “Frequency-Dependent Qf Value of Microwave Dielectric Ceramics,” Journal of American Ceramic Society, Vol.97, No.10, pp.3041-3043, 2014
[45] P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, and D.S. Cannell, “Structure–microwave property relations in (SrxCa(1-x))n+1TinO3n+1,” Journal of the European Ceramic Society, Vol.21, pp.1723-1726, 2001
[46] C.T. Dervos, Ef. Thirios, J. Novacovich, P. Vassiliou, and P. Skafidas, “Permittivity properties of thermally treated TiO2,” Materials Letters, Vol.58, pp.1502-1507, 2004
[47] F. liu, C. L. Yaun, X. Y. Liu, G. H. Chen, C. R. Zhou, and J. J. Qu, “Microstructure and dielectric properties of (1-x)SrTiO3 -xCa0.61Nd0.26TiO3 ceramic system at microwave frequencies,” Journal of Materials Science: Materials in Electronics, Vol.26, pp.128-133, 2015
[48] A. Manan, D. N. Khan, and A. Ullah, “Synthesis and microwave dielectric properties of (1-x)Mg0.95Ni0.05Ti0.98Zr0.02O3 -xSrTiO3 ceramics,” Journal of Materials Science: Materials in Electronics, Vol.26, pp.2066-2069, 2015
[49] Z. J. Wang, Z. H. Wang, M. H. Cao, Z. H. Yao, H. Hao, Z. Song, X. C. Huang, W. Hu, and H. X. Liu, “Structures and dielectric properties of Sr0.9775Sm0.015TiO3 ceramics sintered in N2,” Ceramics International, Vol.41, pp.12945-12949, 2015
[50] JCPDS file, No. 35-0734
[51] K.T. Jacob and G. Rajitha, “Thermodynamic properties of strontium titanates: Sr2TiO4, Sr3Ti2O7, Sr4Ti3O10, and SrTiO3,” Journal of Chemical Thermodynamics, Vol.43, pp.51-57, 2011
[52] R. Roy, “Phase diagrams for ceramists,” American Ceramic Society, Columbus, Ohio, 1964.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50529-
dc.description.abstract為了因應現在通訊產業所需要之頻率與頻寬,微波介電陶瓷已成為重要的材料。鈦酸鍶是一種常見的介電陶瓷。本實驗中,以固態反應法成功合成出不同鍶鈦比之鈦酸鍶粉末,所選擇的鍶/鈦比例從0.909到1.111。本研究觀察不同之鍶鈦比以及不同的燒結溫度所得到的鈦酸鍶試樣。研究結果顯示,鍶鈦比的不同會顯著的影響燒結的收縮速率、微結構、以及缺陷(如氧空缺)的濃度,進而影響微波介電性質。其中富含鈦的試樣所得到的密度(=99%)、介電常數 (=300)以及品質因子 (=3000)皆高於富含鍶的試樣。除此之外,本研究亦發現了品質因子會因為試驗的測量時間不同而有所影響。在Ti1.05 (鍶/鈦比為0.952) 的試樣中,一個月後,其品質因子可上升至18,000。zh_TW
dc.description.abstractIn order to increase the speed and bandwidth for the tele-communications, the development of microwave dielectric ceramic is essential. The strontium titanate (SrTiO3) is one of the dielectric ceramic which is widely used. In the present study, the SrTiO3 powder with various Sr/Ti ratios is successfully produced using solid state reaction. The Sr/Ti ratio varies from 0.909 to 1.111. The characteristics of the specimens with different Sr/Ti ratio after sintering at different temperature are determined. We found that Sr/Ti ratio strongly affected the shrinkage rate, microstructure, and chemical defect concentration. And the microwave dielectric properties depend on the density and Sr/Ti ratio. The Ti-rich specimens exhibit a higher density (=99%), permittivity (=300), and quality factor (=3000) than the Sr-rich specimens. An aging effect on the quality factor is observed. After aging for one month, the quality factor of the specimens with Sr/Ti of 0.952 increases to 18,000.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:44:44Z (GMT). No. of bitstreams: 1
ntu-104-R03527007-1.pdf: 4096489 bytes, checksum: 23153c9d4eb393da34c4c46b69adef57 (MD5)
Previous issue date: 2015
en
dc.description.tableofcontentsContent
摘要 i
Abstract ii
Content iii
List of Figures vi
List of Table x
Chapter 1 Introduction 1
Chapter 2 Literature Survey 3
2-1 SrTiO3 3
2-2 Sintering behavior of SrTiO3 7
2-2-1 Grain growth 7
2-2-2 Non-Arrhenius behavior 10
2-3 Nonstoichiometry SrTiO3 12
2-3-1 Sintering behaviors 12
2-3-2 Second phase 14
2-4 Microwave dielectric properties 17
Chapter 3 Experimental Procedures 21
3-1 Processing 21
3-1-1 Starting materials 21
3-1-2 Solid state reaction 22
3-1-3 Sintering 22
3-2 Characterization 24
3-2-1 Phase Identification 24
3-2-2 Relative Density 24
3-2-3 Microstructure Observation 25
3-2-4 Dielectric Properties Measurement 25
3-2-5 Microwave Dielectric Properties 26
3-2-6 Dilatometer analysis 26
3-2-7 Insulation Resistance 26
Chapter 4 Results 27
4-1 Calcination and Sintering of SrTixO3 27
4-1-1 Particle Size 27
4-1-2 Phase identification 28
4-1-3 Density and Weight Loss 31
4-1-4 Dilatometer Measurement 33
4-1-5 Microstructure Observation 35
4-2 Dielectric Properties 45
4-2-1 Dielectric properties measured at low frequency 45
4-2-2 Aging effect on dielectric properties 50
4-2-3 Microwave dielectric properties 52
4-2-4 Insulation Resistance 55
Chapter 5 Discussion 56
5-1 Formation of nonstoichiometry SrTiO3 56
5-2 Sintering Behavior and Microstructure 59
5-3 Dielectric properties 64
5-4 Microwave properties 67
5-5 General discussion and future work 71
Chapter 6 Conclusions 73
References 75
dc.language.isoen
dc.title不同鍶鈦比對鈦酸鍶之燒結行為及微波介電性質之研究zh_TW
dc.titleSintering behavior and microwave dielectric properties of SrTiO3 with various Sr/Ti ratioen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝宗霖(Jay Shieh),施劭儒(Shao-Ju Shih),馮奎智(Kwe-Gi Feng)
dc.subject.keyword鈦酸鍶,鍶鈦比,燒結行為,微波介電性質,zh_TW
dc.subject.keywordnonstoichiometry SrTiO3,sintering behavior,microwave dielectric properties,en
dc.relation.page82
dc.identifier.doi10.6342/NTU201601290
dc.rights.note有償授權
dc.date.accepted2016-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-104-1.pdf
  目前未授權公開取用
4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved