Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50528
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡忠潤(Chung-Jun Tsai)
dc.contributor.authorChao-Ming Linen
dc.contributor.author林朝明zh_TW
dc.date.accessioned2021-06-15T12:44:42Z-
dc.date.available2016-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-26
dc.identifier.citation[1] Berger, M. Sur les groupes d’holonomie homog`enes de vari ́et ́es a` connexion affine et des vari ́et ́es riemanniennes. Bulletin de la Soci ́et ́e Math ́ematique de France 83 (1955), 279–330.
[2] Berlin, T. F., Berlin, I. K., Paris, A. M., and Berlin, U. S. On Nearly Parallel G2-Structures. 0–29.
[3] Brown, R. B., and Gray, A. Vector cross products. Commentarii Mathematici Helvetici 42, 1 (1967), 222–236.
[4] Bryant, R., and Salamon, S. On construction of some complete metrics with exceptional holonomy. Duke Math. J. 58, 3 (1989), 829.
[5] Bryant, R., and Xu, F. Laplacian Flow for Closed G2-Structures: Short Time Behavior. 20.
[6] Bryant, R. L. Metrics with exceptional holonomy. Annals of mathematics 126, 3 (1987), 525–576.
[7] Bryant, R. L. Some remarks on G2-structures. 211–224.
[8] Fine, J. A gauge theoretic approach to the anti-self-dual Einstein equations. arXiv : 1111 . 5005v2 [ math . DG ] 29 Nov 2011 (2011).
[9] Grigorian, S. Short-time behaviour of a modified Laplacian coflow of G2-structures. Advances in Mathematics 248 (2013), 378–415.
[10] Hamilton, R. S. The inverse function theorem of Nash and Moser. Bulletin of the American Mathematical Society 7, 1 (1982), 65–223.
[11] Hitchin, N. The geometry of three-forms in six and seven dimensions. 2000. arXiv preprint math.dg/0010054 (2008), 1–38.
[12] Joyce, D. D. Compact Riemannian 7-manifolds with holonomy G2. I. Journal of Differential Geometry 43, 2 (1996), 329–375.
[13] Joyce, D. D. Compact Riemannian 7-manifolds with holonomy G2. II. Journal of Differential Geometry 43, 2 (1996), 329–375.
[14] Joyce; Dominic D. Compact Manifolds with Special Holonomy.pdf, 2000.
[15] Karigiannis, S. Deformations of G2 and Spin(7) Structures on Manifolds. 1–17.
[16] Karigiannis, S. Flows of G2-structures. 12.
[17] Lawson, H. B., Lawson, H. B., Michelsohn, M.-L., and Michelsohn, M.-L. Spin geometry. 1989.
[18] Lotay, J. D., and Wei, Y. Laplacian flow for closed G2 structures: Shi-type estimates, uniqueness and compactness. 1–52.
[19] Lotay, J. D., and Wei, Y. Stability of torsion-free G2 structures along the Laplacian flow. 1–24.
[20] Salamon, D. Riemannian geometry and holonomy groups. Acta Applicandae Mathematicae 20, 3 (1990), 309–311.
[21] Weber, P. Introduction to definite connection.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50528-
dc.description.abstract本文主要在研究 G2 流形上的幾何性質,以及與其相關的主題。本文主要分為三個部分,第一部分給出了有關 G2 流形基本性質的定義與重新證明,舉例來說如果一個七維流形是一個 G2 流形的話,那它存在一個愛因斯坦點積,而且是里奇平坦流形。第二部分整理了目前主要在 G2 流形上的體積函數,例如 Hitchin 的體積函數,並分析了其在極值點附近是否有好的性質。第三部分給出了一種在某些主叢上造出愛因斯坦點積的方法,準確來說,我們在上面造出了一個 co-closed G2 結構並滿足了幾乎平行的性質,所以推得在主叢上有一個愛因斯坦點積是由 co-closed G2 結構給出。zh_TW
dc.description.abstractIn this master thesis, we study the G2 geometry and some relevant topics. There are three main sections in this master thesis, in the first part, we state the definitions and reprove some general facts of G2 geometry, for example, if a 7-dimensional manifold is a G2 manifold, then there exists an Einstein metric on it, moreover, the metric is Ricci flat. In the second part, we summarize some volume functional on G2 manifold in date, for example, the Hitchin's volume functional, and we analyze the stability at the critical points. In the third section, we construct an Einstein metric on certain principal bundle, technically, we give a construction of co-closed G2-structure satisfies the nearly parallel condition, hence the principal bundle contains an Einstein metric which is induced by the co-closed G2-structure.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:44:42Z (GMT). No. of bitstreams: 1
ntu-105-R03221003-1.pdf: 966376 bytes, checksum: 1a1291c1a33a76cdf9630c65749a9060 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents1 Introduction.................................................................................. 1
2 Basic facts of G2 geometry........................................................ 2
2.1 Definitions of G2 geometry....................................................... 2
2.2 Classical results of G2 geometry............................................. 4
2.3 Reproof of some known facts.................................................. 6
2.4 Nearly parallel G2-structure...................................................... 15
3 Some volume functional on 7-manifold with G2-structure.... 18
3.1 Hithcin’s volume functional...................................................... 18
3.2 Grigorian’s volume functional................................................... 24
4 Definite connection on 4-dimensional manifolds......................... 30
4.1 A construction of Einstein metric on certain principal bundle.. 30
5 Appendix....................................................................................... 37
6 References.................................................................................... 47
dc.language.isoen
dc.subject幾乎平行 G2 結構zh_TW
dc.subject里奇曲率張量zh_TW
dc.subject愛因斯坦點積zh_TW
dc.subjectG2 流形zh_TW
dc.subject主叢zh_TW
dc.subjectRicci curvatureen
dc.subjectEinstein metricen
dc.subjectG2 manifolden
dc.subjectprincipal bundleen
dc.subjectnearly parallel G2-structureen
dc.titleG2流形上的幾何性質zh_TW
dc.titleOn the Geometry of G2 Manifoldsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王慕道(Mu-Tao Wang),崔茂培(Mao-Pei Tsui)
dc.subject.keywordG2 流形,愛因斯坦點積,里奇曲率張量,主叢,幾乎平行 G2 結構,zh_TW
dc.subject.keywordG2 manifold,Einstein metric,Ricci curvature,principal bundle,nearly parallel G2-structure,en
dc.relation.page48
dc.identifier.doi10.6342/NTU201601276
dc.rights.note有償授權
dc.date.accepted2016-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
943.73 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved