請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50525完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃尹男(Yin-Nan Huang) | |
| dc.contributor.author | Yu-Cheng Cheng | en |
| dc.contributor.author | 鄭與錚 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:44:34Z | - |
| dc.date.available | 2017-08-02 | |
| dc.date.copyright | 2016-08-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-25 | |
| dc.identifier.citation | ACI 318 (2014), “Building Code Requirements for Structural Concrete and Commentary” American Concrete Institute, Farmington Hills, MI.
AISC (2014), “Specification for Safety-Related Steel Structures for Nuclear Facilities” AISC N690s1, public review draft, dated May 1, 2014, AISC, Chicago, IL. Akita S, Ozaki M, Niwa N, Matsuo I, and K, H. (2001). 'Study on steel plate reinforced concrete bearing wall for nuclear power plants (part #2). analytical method to evaluate response of SC walls.' International Association for Structural Mechanics in Reactor Technology (IASMiRT)Raleigh, NC: North Carolina State University. Braverman,J.,Morante,R.,Hofmayer,C.,(1997).' Assessment of Modular Construction for Safety-Related Structures at Advanced Nuclear Power Plants.'U.S. Nuclear Regulatory Commision, Washington,DC,USA. Epackachi, S., Whittaker, A. S., and Huang, Y. N. (2015). 'Analytical modeling of rectangular SC wall panels.' Journal of Constructional Steel Research, 105, 49-59. Fujita, T., Funakoshi, A., Akita, S., and Matsuo, I. (1998). 'Experimental Study on a Concrete Filled Steel Structure Part 14 thru 17 Bending Shear Tests.' Summaries of Technical Papers of Annual Meeting, ArchInst. of Japan, pp. 1121-1128. Fukumoto, T., Kato, B., and Sato, K. (1987). 'Concrete filled steel bearing walls.' IABSE SymposiumIABSESymposium. Funakoshi, A., Akita, S., Matsumoto, H., Hara, K., Matsuo, I., and Hayashi, N. (1998). 'Experimental study on a concrete filled steel structure Part. 7 Bending Shear Tests.' Summaries of Technical Papers of Annual MeetingArchitectural Institute of Japan, pp. 1063-1064. Kurt, Varma, A., Booth, P., and Whittaker, A. S. (2013). 'SC Wall Piers and Basemat Connections: Numerical Investigation of Behavior and Design ' SMiRT-22San Francisco, California. Kurt, E. G., Varma, A. H., Epackachi, S., and Whittaker, A. S. 'Rectangular SC Wall Piers: Summary of Seismic Behavior and Design.' Proc., Structures Congress 2015, ASCE, 1042-1051. Lai, Z., Varma, A. H., and Zhang, K. (2014). 'Noncompact and slender rectangular CFT members: Experimental database, analysis, and design.' Journal of Constructional Steel Research, 101, 455-468. Nie, J.-G., Hu, H.-S., Fan, J.-S., Tao, M.-X., Li, S.-Y., and Liu, F.-J. (2013). 'Experimental study on seismic behavior of high-strength concrete filled double-steel-plate composite walls.' Journal of Constructional Steel Research, 88, 206-219. Ozaki, M., Akita, S., Osuga, H., Nakayama, T., and Adachi, N. (2004). 'Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear.' Nuclear Engineering and Design, 228(1–3), 225-244. Park, R. 'Ductility evaluation from laboratory and analytical testing.' Proc., Proceedings of the 9th World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan, 605-616. Peter Booth, Amit H. Varma, and Seo, J. (2015). 'Lateral load capacity of steel plate composite wall structures.' SMiRT23Manchester, United Kingdom. Sanjeev R. Malushte, Amit H. Varma (2015).'Rethinking Steel-Plate Composite (SC) Construction for Improved Sustainability and Resiliency of Nuclear Power Plant Structures.'Power Engineerimg. Takeuchi, M., Narikawa, M., Matsuo, I., Hara, K., and Usami, S. (1998). Nuclear Engineering and Design. Varma, A. H., Malushte, S. R., Sener, K. C., and Lai, Z. (2014). 'Steel-plate composite (SC) walls for safety related nuclear facilities: Design for in-plane forces and out-of-plane moments.' Nuclear Engineering and Design, 269, 240-249. Varma, A. H., Zhang, K., Chi, H., Booth, P., and Baker, T. 'In-plane shear behavior of SC composite walls: theory vs. experiment.' Proc., Proceedings of the 21st IASMiRT Conference (SMiRT 21). Zhang, K., Varma, A. H., Malushte, S. R., and Gallocher, S. (2014). 'Effect of shear connectors on local buckling and composite action in steel concrete composite walls.' Nuclear Engineering and Design, 269, 231-239. 陳柏安(2015),低矮行鋼板混凝土複合牆之耐震性能試驗與分析,國立台灣大學工學院土木工程學系碩士論文。 經濟部能源局,“能源統計手冊”,民國一百零三年。 蔣歡軍,王斌,呂西林(2015),“鋼板混凝土組合筒體抗震性能研究”,第四屆海峽兩岸地震工程青年學者研討會暨第六屆邊界元素法會議 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50525 | - |
| dc.description.abstract | 鋼板混凝土複合牆為核能電廠中常見之重要複合材料結構元件,係以兩片鋼板內填充混凝土材料組合而成,鋼板與填充混凝土之間以剪力釘及螺桿作為連接器以傳遞剪力,常配置於核能電廠中作為抗垂直力及側向力系統,現今設計規範AISC N690 (2012)針對鋼板混凝土複合牆提出平面內剪力強度、平面外剪力強度及平面外撓曲強度等設計公式,而無平面內撓曲強度建議公式,惟近來有研究顯示AISC N690之平面內剪力強度估算公式會低估含邊界構材之鋼板混凝土複合牆之剪力強度。
為瞭解含邊界構材之鋼板混凝土複合牆之耐震性能,本研究於國家地震工程研究中心完成四面大尺寸含邊界構材之鋼板混凝土複合牆反覆載重試驗,為包含剪力主控與撓曲主控兩種破壞模式,本試驗試體之高寬比分別為0.75及1.22,並以厚鋼板作為牆體之邊界構材,藉由高寬比及邊界鋼板厚度的調整來達成不同破壞模式。本研究探討不同混凝土強度與高寬比對剪力強度及撓曲強度之影響,並進一步探討既有規範及文獻中剪力強度及撓曲強度建議公式之準確性及適用性。 | zh_TW |
| dc.description.abstract | Steel-plate composite (SC) walls are being used in the third generation of nuclear power plants. SC walls are composed of steel faceplates, connectors and infill concrete, where the connectors are typically constructed from cross-wall tie rods and shear studs welded to the faceplates. The connectors used to transfer shear between faceplate and concrete. The AISC N690s1 provides recommendations for in-plane shear strength, out-of-plane shear strength and out-of-plane flexure strength for steel-plate composite walls, but not for in-plane flexure strength. A recent study concludes that the in-plane shear strength of steel-plate composite walls with boundary elements was underestimated in AISC N690.
The behavior of four SC walls with boundary elements subjected to cyclic in-plane loading is summarized in this study. The experiment was executed in the laboratory of National Center for Research on Earthquake Engineering (NCREE) in Taiwan. Thick steel plates were used as boundary elements of the four specimens. The specimens were designed to study two kinds of failure modes, including 1) shear critical walls with an aspect ratio of 0.75 and a thickness of 3 cm for boundary elements; and 2) flexure critical walls with an aspect ratio of 1.22 and a thickness of 2 cm for boundary elements. The test results were compared with the recommendations of AISC N690s1 and selected literatures. The impact of wall aspect ratio, concrete compressive strength and wall thickness on the in-plane shear strength and in-plane flexure strength of SC walls with boundary elements were discussed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:44:34Z (GMT). No. of bitstreams: 1 ntu-105-R03521239-1.pdf: 13447622 bytes, checksum: 0190788ec50235050c799021edf6f739 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 v 表目錄 viii 圖目錄 x 第一章 緒論 1 1.1 簡介 1 1.2 研究目的與方法 2 1.3 論文結構 2 第二章 文獻回顧 5 2.1 規範之剪力連接器設計 5 2.2 無邊界構材之鋼板混凝土複合牆之強度預測 8 2.2.1 AISC N690規範剪力強度預測 8 2.2.2 Kurt et al. (2015)撓曲強度預測 9 2.2.3 Epackachi et al. (2015)簡化側推理論參數模型 11 2.3 有邊界構材之鋼板混凝土複合牆之強度預測 13 2.3.1 Peter Booth et al. (2015)剪力強度預測 13 2.4 Nie et al. (2013)雙鋼板填充混凝土複合牆研究 14 第三章 試體設計與規劃 30 3.1 試驗計畫 30 3.2 初步估計 31 3.3 試體設計 31 3.3.1 牆體 32 3.3.2 基座 33 3.3.3 施力梁與傳力梁 33 3.4 試體施作 34 3.4.1 基礎施作 34 3.4.2 牆體施作 35 3.5 試驗佈置 36 3.5.1 側撐系統安裝 36 3.5.2 基礎安裝 36 3.5.3 牆體安裝 37 3.5.4 傳力系統安裝 37 3.5.5 試驗施作順序 37 3.6 反覆載重歷時 38 3.7 量測儀器佈置 38 3.7.1 相機佈置 38 3.7.2 NDI佈置 38 3.7.3 應變計佈置 39 3.7.4 位移計佈置 39 3.7.5 石膏漆 40 第四章 試驗結果 63 4.1 材料試驗 63 4.1.1 混凝土 63 4.1.2 鋼材 63 4.2 銲道檢討 64 4.3 試驗數據統整 65 4.4 遲滯迴圈 67 4.5 破壞結果探討 69 4.6 應變計量測結果 71 4.7 NDI量測結果 72 4.8 能量消散 74 4.9 韌性分析 75 4.10 變形貢獻 75 第五章 預測結果與試驗結果比較 122 5.1 剪力強度預測-Peter Booth et al. (2015)剪力預測公式 122 5.2 撓曲強度預測 123 5.2.1 Kurt et al. (2015)撓曲預測公式 123 5.2.2 Epackachi et al. (2015)簡化模型 123 5.2.3 XTRACT 124 5.3 預測與試驗結果比較 126 5.3.1 剪力強度比較 126 5.3.2 撓曲強度比較 128 5.3.3 小結 129 第六章 結論與建議 140 6.1 結論 140 6.2 建議 141 參考文獻 142 | |
| dc.language.iso | zh-TW | |
| dc.subject | 邊界構材 | zh_TW |
| dc.subject | 撓曲強度 | zh_TW |
| dc.subject | 剪力強度 | zh_TW |
| dc.subject | 擬靜態反覆載重試驗 | zh_TW |
| dc.subject | 高寬比 | zh_TW |
| dc.subject | 鋼板混凝土複合牆 | zh_TW |
| dc.subject | shear strength | en |
| dc.subject | steel-plate composite wall | en |
| dc.subject | cyclic loading | en |
| dc.subject | boundary element | en |
| dc.subject | flexure strength | en |
| dc.subject | shear strength | en |
| dc.subject | aspect ratio | en |
| dc.subject | flexure strength | en |
| dc.subject | cyclic loading | en |
| dc.subject | aspect ratio | en |
| dc.subject | boundary element | en |
| dc.subject | steel-plate composite wall | en |
| dc.title | 有邊界構材之鋼板混凝土複合牆之耐震行為與試驗研究 | zh_TW |
| dc.title | An Experimental Study of In-Plane Behavior of Steel-Plate Composite Walls with Boundary Elements | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.subject.keyword | 鋼板混凝土複合牆,邊界構材,高寬比,擬靜態反覆載重試驗,剪力強度,撓曲強度, | zh_TW |
| dc.subject.keyword | steel-plate composite wall,boundary element,aspect ratio,cyclic loading,shear strength,flexure strength, | en |
| dc.relation.page | 144 | |
| dc.identifier.doi | 10.6342/NTU201601322 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 13.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
