請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50505完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張孟基(Men-Chi Chang) | |
| dc.contributor.author | Sung-Han Yu | en |
| dc.contributor.author | 游松翰 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:43:38Z | - |
| dc.date.available | 2019-08-02 | |
| dc.date.copyright | 2016-08-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-26 | |
| dc.identifier.citation | 1. Abe H, Yamaguchi-Shinozaki K, Urao T, lwasaki T, Hosokawa D, Shinozaki K. 1997. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. The Plant Cell. 9: 1859-1868.
2. Ahmad A, Niwa Y, Goto¤b S, Ogawa T, Shimizu M, Suzuki A, Kyoko Kobayashi K, Kobayashi H. 2015. bHLH106 integrates functions of multiple genes through their G-Box to confer salt tolerance on Arabidopsis. PLoS ONE 10(5): e0126872. doi:10.1371/journal. 3. Ahuja I, Vos RC, Bones AM, Hall RD. 2010. Plant molecular stress responses face climate change. Trends in Plant Science. 15:664–674. 4. Anna MT, Maria GE, Lello Z. 2008. Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). Journal of proteomics 71: 391-411 5. Arbona V, Manzi M, Ollas C, Gómez-Cadenas A. 2013. Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences. 14: 4885-4911 6. Chaves MM, Maroco JP, Pereira JS. 2003. Understanding plant responses to drought – from genes to the whole plant. Functional Plant Biology 30: 239–264. 7. Chen Y, Li F, Ma Y, Chong K, Xu Y. 2013. Overexpression of OrbHLH001, a putative helix-loop-helix transcription factor, causes increased expression of AKT1 and maintains ionic balance under salt stress in rice. Plant Physiology. 170: 93-100. 8. Church GM, Ephrussit A, Gilbert W, Tonegawa S. 1985. Cell-type-specific contacts to immunoglobulin enhancers in nuclei. Nature. 313: 798–801 9. Cui MH, Yoo KS, Hyoung S, Nguyen HT, Kim YY, Kim HJ, Ok SH, Yoo SD, Shin JS. 2013. An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. Federation of European Biochemical Societies Letters 587: 1773–1778 10. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI. 2014. Plant salt-tolerance mechanisms. Trends in Plant Science 19: 371-379. 11. Fukuda A, Nakamura A, Hara N, Seiichi Toki S, Tanaka Y. 2011. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233:175–188 12. Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PMY, Tham C, Duan L, Dinneny JR. 2013. A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. The Plant Cell. 25: 2132-2154. 13. Hodges DM, DeLong JM, Forney CF, Prange RK. 1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207: 604-611 14. Horie T, Sugawara M, Okada T, Taira K, Kaothien-Nakayama P, Katsuhara M, Shinmyo A, Nakayama H. 2010. Rice sodium-insensitive potassium transporter, OsHAK5, confers increased salt tolerance in tobacco BY2 cells. Journal of Bioscience and Bioengineering. 111: 346-356 15. Jefferson RA, Kavanagh TA, Bevan MW. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO journal. 6: 3901-3907. 16. Jiang Y and Deyholos MK. 2009. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology. 69: 91-105. 17. Jiang Y, Yang B, Deyholos MK. 2009. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Molecular Genetics and Genomics. 282:503–516. 18. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology. 17: 287 – 291 19. Knight H, Trewavas AJ, Knight MR. 1997. Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant Journal. 12:1067–1078 20. Ko SS, Li MJ, Ku MS, Ho YC, Lin YJ, Chuang MH, Hsing HX, Lien YC, Yang HT, Chang HC, Chana MT. 2014. The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. The Plant Cell. 26: 2486–2504. 21. Liu W, Tai H, Li S, Gao W, Zhao M, Xie C, Li WX. 2013. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytologist. 201: 1192–1204. 22. Liu Y, Ji X, Nie X, Qu M, Zheng L, Tan Z, Zhao H, Huo L, Liu S, Zhang B, Wang Y. 2015. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytologist. 207: 692–709 23. MacAlister CA, Ohashi-Ito1 K, Bergmann DC. 2007. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage. Nature. 445: 537–540. 24. Martí MC, Stancombe MA, Webb AA. 2013. Cell- and stimulus type-specific intracellular free Ca2+ signals in Arabidopsis. Plant Physiology. 163:625–634 25. Mワllera IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M. 2009. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type–specific alteration of Na+ transport in Arabidopsis. The Plant Cell. 21: 2163-2178. 26. Munns R and Tester M. 2008. Mechanisms of salinity tolerance. Plant Biology. 59:651–81 27. Penfield S, Josse EM, Kannangara R, Gilday AD, Halliday KJ, Graham IA. 2005. Cold and light control seed germination through the bHLH transcription factor SPATULA. Current Biology. 15: 1998–2006. 28. Pires N and Dolan L. 2010. Origin and diversification of basic-helix-loop-helix proteins in plants. Molecular Biology. 27(4): 862–874. 29. Reymond MC, Brunoud G, Chauvet A, Martínez-Garcia JF, Martin-Magniette ML, Monéger F, Scutta CP. 2012. A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA. The Plant Cell. 24: 2812–2825. 30. Riechmann JL, Ratcliffe OJ. 2000. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology. 3:423–434 31. Seo JS, Joo J, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi1 YD. 2011. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. The Plant Journal. 65: 907–921. 32. Shinozaki K, Yamaguchi-Shinozaki K, Seki M. 2003. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology. 6: 410–417. 33. Shinozaki1 K and Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany. 58: 221–227. 34. Shkolnik-Inbar D, Adler G, Bar-Zvi D. 2013. ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance. The Plant Journal. 73: 993–1005. 35. Takeda S and Matsuoka M. 2008. Genetic approaches to crop improvement: responding to environmental and population changes. Nature Reviews Genetics. 9:444–457. 36. Tran LP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell. 16: 2481-2498. 37. Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proceedings of the National Academy of Sciences. 104: 20623–20628. 38. Wang H, Wang H, Shao H, Tang X. 2016. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Frontier in Plant Science.7:67. 39. Wang R, Jing W, Xiao L, Jin Y, Shen L, Zhang W. 2015. The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiology. 168: 1076-1090. 40. Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M. 2005. Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Molecular Biology. 59:191–203 41. Xu K, Liu J, Fan M, Xin W, Hu Y, Xu C. 2012. A genome-wide transcriptome profiling reveals the early molecular events during. Genomics. 100: 116–124 42. Xue S, Yao X, Luo W, Jha D, Tester M, Horie T, Schroeder JI. 2011. AtHKT1;1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells. PLoS ONE. 6(9): e24725. doi:10.1371/journal.pone.0024725 43. Yamaguchi T and Blumwald E. 2005. Developing salt-tolerant crop plants: challenges and opportunities. Trends in Plant Science.10: 615–620 44. Yamaguchi T, Hamamoto S, Uozumi N. 2013. Sodium transport system in plant cells. Frontiers in Plant Science. 4:410 45. Yang F, Wang Q, Schmitz G, Müller D, Theres K. 2012. The bHLH protein ROX acts in concert with RAX1 and LAS to modulate axillary meristem formation in Arabidopsis. Plant Journal. 71: 61–70. 46. Yang O, Popova1 OV, Süthoff U, Lüking I, Dietz KJ, Golldack D. 2009. The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene. 436:45-55 47. Yang YY, Chen HC, Jen WF, Liu LY, Chang MC. 2015. Seedlings under cold stress and following subsequent recovery: insights into metabolic pathways, phytohormones and transcription factors. PLoS ONE 10(7): e0131391. doi:10.1371/ 48. Zhou J, Li F, Wang JL, Ma Y, Chong K, Xu YY. 2009. Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt and osmotic stress in Arabidopsis. Journal of Plant Physiology. 166: 1296-1306 49. Zou M, Guan Y, Ren H, Zhang F, Chen F. 2008. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Molecular Biology. 66:675–683 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50505 | - |
| dc.description.abstract | 水稻bHLH轉錄因子(basic helix-loop-helix transcription factor, bHLH TF)為重要之轉錄因子多基因家族,參與諸多生理功能,包括生長發育以及對抗非生物逆境等。由於轉錄因子多基因家族功能互補特性,如何確認特定轉錄因子之功能在研究上有一定之困難度。在本篇研究中,我們由實驗室先前水稻DNA微陣列的分析結果找出了在鹽及乾旱逆境下基因表現受抑制之轉錄因子OsbHLH046,並進一步以RT-PCR確認之。根據OsbHLH046-GFP之融合蛋白表現分析,發現OsbHLH046為一核蛋白。而Rice eFP browser與OsbHLH046 pro::GUS轉植株染色結果分析則顯示OsbHLH046在水稻胚、種子根、側根、幼苗時期地上部與花藥等部位皆有表現,其表現隨著幼苗葉齡漸大而有減弱之趨勢,但於成熟之花藥仍具高表現量。而OsbHLH046之Knock-down Tos17插入突變株相比於野生型植株有著較差的發芽率,較低的株高與較差的鹽逆境恢復性。丙二醛之含量測定亦顯示Osbhlh046突變株於鹽逆境下含量較野生型植株高。另外,qRT-PCR結果顯示部分鹽逆境耐受相關基因如OsNHX2與OsABI5在鹽逆境恢復階段中於Osbhlh046與野生型植株彼此間有著差異表現。而在ICP-OES元素分析的結果中,發現Osbhlh046植株在地下部於鹽逆境處理後復水五天,其K+/Na+比值較高,相較於野生型,無法維持Na+之恆定性而恢復性較差。最後,OsbHLH046過量表現系之癒傷組織相比於其他轉殖系,再生率差值達74%左右。綜上所述, OsbHLH046應參與種子發芽、植株生長,並且於鹽逆境下作為ㄧ正向調控因子參與水稻之耐受性。 | zh_TW |
| dc.description.abstract | Rice basic-Helix-Loop-Helix (OsbHLH) transcription factors (TFs) belong to a multiple gene family and are known to involve in rice growth, development, regulating abiotic stress-responsive gene expression and tolerance of rice. However, because functional redundancy within the super gene family and the pleiotropic effect of individual TF, the specific function for corresponding OsbHLH is not easy to be determined. In this study, we identified an OsbHLH046 TF which is down-regulated by salt and cold treatments from previous microarray result and further confirmed the gene expression by reverse transcription-PCR (RT-PCR). The OsbHLH046-GFP fusion protein showed OsbHLH046 is located in nucleus. Based on the predication of rice eFP browser and the GUS-histochemical staining indicated that OsbHLH046 is expressed in the embryo, seedling root, lateral roots, shoots and anthers. The gene expression was higher at the early germination stage then declined to lower level within 3rd leaf stage. Compared with WT, the Osbhlh046, a Tos17 knocked-down rice mutant, displayed late seed germination, growth retardation, and unable to recover from salt stress at seedling stage. The q-PCR data indicated that salt tolerance related genes in such as OsABI5, OsNHX2 were differential expressed between two plants during recovery stage. The MDA was overaccumulated in Osbhlh046 mutant compared to wild type after recover from salt stress. The ICP-OES elemental analysis also revealed that the Osbhlh046 plant have lower K+ content level, which may not able to maintain the Na+ homeostasis. Meanwhile, the callus of OsbHLH046 overexpression line showed a relative poor regeneration rate. Taken together, these results suggested that OsbHLH046 plays as a positive regulator in seed germination, seedling growth, and contributes to the ability of rice to recover from salt stress. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:43:38Z (GMT). No. of bitstreams: 1 ntu-105-R03621111-1.pdf: 2373636 bytes, checksum: 6f5dbb501fd6eb8d641d1e702ab1e518 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Acknowledgement I
Chinese abstract II Abstract III Table content VI Figure content VI Supplemental content VI Abbreviations VIII Chapter1. Introduction 1 Plant response under abiotic stress 1 Salt stress response in plants 4 The role of transcription factor in plants 6 bHLH transcription factor Sub-family in plants 7 Motivation and objectives 9 Chapter2. Material and Methods 11 Plant materials 11 In situ subcellular localization of OsbHLH046 11 Phenotyping analysis of seedling under salt stress 12 PCR-based genotyping assay of rice mutant 12 Quantitative real-time PCR for gene expression analysis 12 Fv/Fm measurement with chlorophyll fluorescence 13 Thermal graphic analysis of the surface temperature of rice mutant 13 Malondialdehyde (MDA) measurement 14 K+ and Na+ concentration measurement by ICP-OES 15 GUS (β-glucuronidase) staining assay of rice seedling 15 Chapter3. Results 17 The Tos17 mutant, Oshlh046 is a knock-down mutant 17 GUS staining of OsbHLH046 reveals its expression in embryo, seedling root, lateral roots, seedling shoot and anther. 17 OsbHLH046 participates in controlling of rice seed germination 18 Osbhlh046 mutant is less tolerant to salt stress at seedling as compared to wild type 18 Overexpression OsbHLH046 results in poor regeneration efficiency in rice callus 19 Chapter4. Discussion 21 bHLH transcription factors are involved in abiotic stress responses 21 OsbHLH046 may participate in ABA-dependent pathway of salt stress tolerance in rice 22 OsbHLH046 may regulate ion transporters during salt stress 23 OsbHLH046 may involve in seed germination 24 Overexpression OsbHLH046 affects callus regeneration rate 25 Conclusion 26 Reference 27 Table content Table 1. Comparison of the transformation efficiency between OsbHLH046 OE and other OsbHLH046 GFP transgenic lines 31 Figure content Fig. 1. PCR-based genotyping of NF5554 (Osbhlh046) rice mutant 32 Fig. 2. The gene expression of OsbHLH046 under salt stress 33 Fig. 3. The sub-cellular localization and in vivo GUS chemical staining of OsbHLH046 in rice 34 Fig. 4. The Osbhlh046 mutant showed a delay seed germination phenotype 36 Fig. 5. The Osbhlh046 mutant is less tolerant under salt stress 37 Fig. 6. The Osbhlh046 mutant is less tolerant to the salt stress after recovery 38 Fig. 7. Analysis of Na+/K+ ratios in roots of WT and Osbhlh046 mutant 39 Fig. 8. The expression pattern of salt-related tolerance genes in rice shoot and root 40 Fig 9. The appearance of rice callus that transformed with overexpression of OsbHLH046 gene 41 Supplemental content Fig. S1. The relative gene expression level of OsbHLH046 in Nipponbare after salt treatment 42 Fig. S2. The relative gene expression level of OsbHLH046 in Osbhlh046 rice seedling 43 Fig. S3. The E-boxes cis-acting DNA element which identified in the promoters of OsABI5 and OsNHX2 genes 44 Appendix Appendix 1. The map of OsbHLH046 OE and OsbHLH046 RNAi construct 45 Appendix 2. List of transgenic plant materials 46 | |
| dc.language.iso | en | |
| dc.subject | GUS | zh_TW |
| dc.subject | bHLH | zh_TW |
| dc.subject | GUS | zh_TW |
| dc.subject | ICP-OES | zh_TW |
| dc.subject | qRT-PCR | zh_TW |
| dc.subject | 鹽逆境 | zh_TW |
| dc.subject | 轉錄因子 | zh_TW |
| dc.subject | 轉錄因子 | zh_TW |
| dc.subject | 鹽逆境 | zh_TW |
| dc.subject | bHLH | zh_TW |
| dc.subject | qRT-PCR | zh_TW |
| dc.subject | ICP-OES | zh_TW |
| dc.subject | GUS | en |
| dc.subject | bHLH (basic helix-loop-helix) | en |
| dc.subject | ICP-OES | en |
| dc.subject | qRT-PCR | en |
| dc.subject | Transcrption factor | en |
| dc.subject | Salt stress | en |
| dc.subject | bHLH (basic helix-loop-helix) | en |
| dc.subject | GUS | en |
| dc.subject | ICP-OES | en |
| dc.subject | qRT-PCR | en |
| dc.subject | Transcrption factor | en |
| dc.subject | Salt stress | en |
| dc.title | 水稻轉錄因子OsbHLH046參與水稻幼苗鹽逆境之耐受性 | zh_TW |
| dc.title | The Rice Transcription Factor, OsbHLH046, Contributes to Salt Stress Tolerance at Seedling Stage | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 侯新龍(Shin-Lon Ho),鄭萬興(Wan-Hsing Cheng),洪傳揚(Chwan-Yang Hong),蔡育彰(Yu-Chang Tsai) | |
| dc.subject.keyword | bHLH,GUS,ICP-OES,qRT-PCR,鹽逆境,轉錄因子, | zh_TW |
| dc.subject.keyword | bHLH (basic helix-loop-helix),GUS,ICP-OES,qRT-PCR,Transcrption factor,Salt stress, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU201601132 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-27 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
