Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50504
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊維(Chun-Wei Chen)
dc.contributor.authorChun-Chi Chenen
dc.contributor.author陳俊吉zh_TW
dc.date.accessioned2021-06-15T12:43:36Z-
dc.date.available2021-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-26
dc.identifier.citation1 Rycroft, M. J. V. Smil, Energy in Nature and Society: General Energetics of Complex Systems. Surveys in Geophysics 29, 67-69, doi:10.1007/s10712-008-9034-2 (2008).
2 Geim, A. K. Graphene: status and prospects. Science 324, 1530-1534, doi:10.1126/science.1158877 (2009).
3 Young, R. J., Kinloch, I. A., Gong, L. & Novoselov, K. S. The mechanics of graphene nanocomposites: A review. Composites Science and Technology 72, 1459-1476, doi:10.1016/j.compscitech.2012.05.005 (2012).
4 Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666-669, doi:10.1126/science.1102896 (2004).
5 Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308, doi:10.1126/science.1156965 (2008).
6 Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388, doi:10.1126/science.1157996 (2008).
7 Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett 8, 902-907, doi:10.1021/nl0731872 (2008).
8 Schwierz, F. Graphene transistors. Nat Nanotechnol 5, 487-496, doi:10.1038/nnano.2010.89 (2010).
9 Li, X. et al. Graphene-On-Silicon Schottky Junction Solar Cells. Advanced Materials 22, 2743-2748, doi:10.1002/adma.200904383 (2010).
10 Xia, F., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat Nanotechnol 4, 839-843, doi:10.1038/nnano.2009.292 (2009).
11 Liu, C., Yu, Z., Neff, D., Zhamu, A. & Jang, B. Z. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10, 4863-4868, doi:10.1021/nl102661q (2010).
12 Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene. Nat Mater 6, 652-655, doi:10.1038/nmat1967 (2007).
13 Bae, S., Kim, S. J., Shin, D., Ahn, J. H. & Hong, B. H. Towards industrial applications of graphene electrodes. Phys Scripta T146, doi:Artn 014024
10.1088/0031-8949/2012/T146/014024 (2012).
14 Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Reviews of Modern Physics 81, 109-162, doi:10.1103/RevModPhys.81.109 (2009).
15 Fujishima, A. & Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238, 37-38 (1972).
16 Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38, 253-278, doi:10.1039/b800489g (2009).
17 Malik, O., De la Hidalga-W, F. J., Zúñiga-I, C. & Ruiz-T, G. Efficient ITO–Si solar cells and power modules fabricated with a low temperature technology: Results and perspectives. Journal of Non-Crystalline Solids 354, 2472-2477, doi:10.1016/j.jnoncrysol.2007.09.028 (2008).
18 Zhang, Y. et al. Heterojunction with Organic Thin Layers on Silicon for Record Efficiency Hybrid Solar Cells. Advanced Energy Materials 4.2, doi:10.1002/aenm.201300923 (2014).
19 Yu, H. A., Kaneko, Y., Yoshimura, S. & Otani, S. Photovoltaic cell of carbonaceous film/n-type silicon. Applied Physics Letters 68, 547, doi:10.1063/1.116395 (1996).
20 Jia, Y. et al. Nanotube-Silicon Heterojunction Solar Cells. Advanced Materials 20, 4594-4598, doi:10.1002/adma.200801810 (2008).
21 Jia, Y. et al. Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett 11, 1901-1905, doi:10.1021/nl2002632 (2011).
22 Huang, L. et al. Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon 50, 551-556, doi:10.1016/j.carbon.2011.09.012 (2012).
23 Shi, Y. et al. Work function engineering of graphene electrode via chemical doping. ACS Nano 4, 2689-2694, doi:10.1021/nn1005478 (2010).
24 Xie, C. et al. Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells. Journal of Materials Chemistry A 1, 8567, doi:10.1039/c3ta11384a (2013).
25 Shi, E. et al. Colloidal Antireflection Coating Improves Graphene–Silicon Solar Cells. Nano Letters 13, 1776-1781, doi:10.1021/nl400353f (2013).
26 Walter, M. G. et al. Solar water splitting cells. Chem Rev 110, 6446-6473, doi:10.1021/cr1002326 (2010).
27 Gratzel, M. Photoelectrochemical cells. Nature 414, 338-344 (2001).
28 Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews 43, 7520-7535, doi:10.1039/C3CS60378D (2014).
29 Liu, C., Dasgupta, N. P. & Yang, P. Semiconductor Nanowires for Artificial Photosynthesis. Chemistry of Materials 26, 415-422, doi:10.1021/cm4023198 (2014).
30 Candea, R. M., Kastner, M., Goodman, R. & Hickok, N. Photoelectrolysis of Water - Si in Salt-Water. Journal of Applied Physics 47, 2724-2726, doi:Doi 10.1063/1.322995 (1976).
31 Fan, F. R. F. Semiconductor Electrodes. Journal of The Electrochemical Society 129, 1647, doi:10.1149/1.2124229 (1982).
32 Hu, S. et al. Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators. The Journal of Physical Chemistry C 119, 24201-24228, doi:10.1021/acs.jpcc.5b05976 (2015).
33 Kenney, M. J. et al. High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation. Science 342, 836-840, doi:10.1126/science.1241327 (2013).
34 Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005-1009, doi:10.1126/science.1251428 (2014).
35 Sun, K. et al. Si photoanode protected by a metal modified ITO layer with ultrathin NiO(x) for solar water oxidation. Phys Chem Chem Phys 16, 4612-4625, doi:10.1039/c4cp00033a (2014).
36 Geng, D. et al. Non-noble metal oxygen reduction electrocatalysts based on carbon nanotubes with controlled nitrogen contents. Journal of Power Sources 196, 1795-1801, doi:10.1016/j.jpowsour.2010.09.084 (2011).
37 Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312-1314, doi:10.1126/science.1171245 (2009).
38 Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5, 574-578, doi:10.1038/nnano.2010.132 (2010).
39 Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9, 4359-4363, doi:10.1021/nl902623y (2009).
40 Wang, D. Y. et al. Clean-lifting transfer of large-area residual-free graphene films. Adv Mater 25, 4521-4526, doi:10.1002/adma.201301152 (2013).
41 Wang, Y. et al. Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5, 9927-9933, doi:10.1021/nn203700w (2011).
42 Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett 97, 187401, doi:10.1103/PhysRevLett.97.187401 (2006).
43 Li, X., Lv, Z. & Zhu, H. Carbon/Silicon Heterojunction Solar Cells: State of the Art and Prospects. Adv Mater 27, 6549-6574, doi:10.1002/adma.201502999 (2015).
44 Chen, S. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5, 1321-1327, doi:10.1021/nn103028d (2011).
45 Ho, P.-H. et al. Sunlight-activated graphene-heterostructure transparent cathodes: enabling high-performance n-graphene/p-Si Schottky junction photovoltaics. Energy & Environmental Science 8, 2085-2092, doi:10.1039/C5EE00548E (2015).
46 Do Thanh, L. Elimination and Generation of Si-SiO2 Interface Traps by Low Temperature Hydrogen Annealing. Journal of The Electrochemical Society 135, 1797, doi:10.1149/1.2096133 (1988).
47 Lenahan, P. M. & Dressendorfer, P. V. Hole traps and trivalent silicon centers in metal/oxide/silicon devices. Journal of Applied Physics 55, 3495, doi:10.1063/1.332937 (1984).
48 Bong, J. H., Sul, O., Yoon, A., Choi, S. Y. & Cho, B. J. Facile graphene n-doping by wet chemical treatment for electronic applications. Nanoscale 6, 8503-8508, doi:10.1039/c4nr01160k (2014).
49 Ho, P.-H. et al. Self-Crack-Filled Graphene Films by Metallic Nanoparticles for High-Performance Graphene Heterojunction Solar Cells. Advanced Materials 27, 1724-1729, doi:10.1002/adma.201404843 (2015).
50 Yoon, T. et al. Healing Graphene Defects Using Selective Electrochemical Deposition: Toward Flexible and Stretchable Devices. ACS Nano 10, 1539-1545, doi:10.1021/acsnano.5b07098 (2016).
51 Bonora, M. et al. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene 34, 1608, doi:10.1038/onc.2014.462 (2015).
52 Ohno, T., Sarukawa, K. & Matsumura, M. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New Journal of Chemistry 26, 1167-1170, doi:10.1039/b202140d (2002).
53 Hsieh, Y. P. et al. Complete corrosion inhibition through graphene defect passivation. ACS Nano 8, 443-448, doi:10.1021/nn404756q (2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50504-
dc.description.abstract由單層碳原子所組成的石墨烯,因為特殊的能帶結構以及原子排列方式,而擁有許多優異的性質,例如可調變的功函數、高穿透度、高載子遷移率、易被化學修飾等等,這些性質使得石墨烯具有相當的潛力應用於透明電極領域。從文獻中可以發現,石墨烯大多應用於與矽形成蕭基接面之太陽能電池中。然而,可再生能源的應用相當廣泛,除了利用太陽能電池把太陽能轉換成電能之外,近幾年來氫能的重要性也日益漸增,因此如何利用石墨烯與矽形成的蕭基接面作為光電化學元件應用於產氫為我的研究主軸。
在此論文的第一部分,我們成功把石墨烯與矽形成的蕭基接面應用於強酸中做為產氫的光電極,搭配特殊的介面處理製程消除石墨烯與矽晶間原生氧化層進而改善元件表現,最後分析石墨烯在與矽形成的蕭基接面光電化學元件中扮演的角色。在第二部分,我們同樣利用石墨烯與矽形成的蕭基接面,將光觸媒白金運用照光沉積的方式還原於石墨烯的表面,最後得到的起始電壓和純矽元件相比有+0.4V的改善。此外成功利用光沉積法沉積白金也再次應證了第一部分中所得到提升元件表現是因為形成之蕭基接面可增加電荷分離效率的結論。
zh_TW
dc.description.abstractGraphene, a two-dimensional (2D) network of hexagonal-structured and sp2-hybridized carbon atoms has a lot of remarkable properties, such as tunable work function, high transparency, high carrier mobility and the potential to be modified with chemical dopants. These properties make graphene really promising in transparent electrode in Schottky junction solar cell. However, beside electricity of the application for solar energy, hydrogen energy has also attracted much attention recently. As a result, how to utilize graphene/silicon Schottky junction for photoelectrochemical cells (PEC) is my thesis topic.
In the first part of this thesis, we successfully demonstrated graphene/silicon Schottky junction photoelectrochemical cells for hydrogen evolution reaction (HER). With the interfacial cleaner BOE treatment, the hole trap problem can be solved and hence onset potential has anodic shift. Next, we analyze the BOE treatment effect and evaluate the role of graphene in silicon Schottky junction PEC. In the second part, we utilize graphene/silicon Schottky junction to decorate the device with Pt catalysts through photo-deposition method. The final optimized device has significant anodic shift of the onset. In comparison to bare Si with the onset of -0.2 V vs. RHE, the onset potential is shifted positively by 0.4 V. In addition, the success of Pt deposition is a proof-concept of charge separation enhancement of graphene/silicon Schottky junction.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:43:36Z (GMT). No. of bitstreams: 1
ntu-105-R03527041-1.pdf: 3919686 bytes, checksum: c35b95931bd23fab05b924d1712e9d4d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsCONTENTS
ACKNOWLEDGEMENT ii
中文摘要 iv
ABSTRACT v
CONTENTS vi
LIST OF FIGURES ix
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Graphene 3
1.2.1 Introduction of graphene 3
1.2.2 Basic properties of graphene 4
1.3 Schottky Junction 6
1.3.1 Metal-silicon Schottky diode 6
1.3.2 Metal-silicon Schottky solar cell 8
1.3.3 Silicon Schottky solar cell with transparent conducting electrode 9
1.3.4 Graphene-silicon Schottky solar cell 9
1.4 Photoelectrochemical Cell 11
Chapter 2 Literature Review 12
2.1 Silicon Schottky Junction Solar Cell 12
2.1.1 Transparent conducting electrode silicon Schottky junction solar cell 12
2.1.2 Graphene-silicon Schottky junction solar cell 14
2.2 Photoelectrochemical cell 15
2.2.1 The development and property of photoelectrochemical cell 15
2.2.2 The criteria of selecting material 17
2.2.3 The development of silicon-based photoelectrochemical cell 19
Chapter 3 Methods 23
3.1 Chemical Vapor Deposition (CVD) Graphene 23
3.1.1 The synthesis of CVD graphene on copper 23
3.1.2 Transfer process of graphene on copper 25
3.2 Material Characterization and Analysis 27
3.2.1 Raman spectrum of graphene 27
3.2.2 Scanning electron microscope 28
3.2.3 Energy-dispersive X-ray spectroscopy (EDS) 29
3.2.4 Auger spectroscopy 29
3.3 Graphene-Silicon Schottky Photoelectrochemical Cell 30
3.3.1 Introduction of solar spectrum 30
3.3.2 Fabrication of graphene-silicon Schottky Photoelectrochemical cell 32
3.3.3 Characterization of Photoelectrochemical cell 33
Chapter 4 Graphene-Silicon Schottky for Photoelectrochemical cell 39
4.1 Motivation 39
4.2 Critical Problem for Graphene/p-Si Schottky Junction 41
4.3 The Impact of BOE Treatment 42
4.3.1 Linear sweep voltammetry results 43
4.3.2 Characterization by AC impedance analysis 43
4.4 The Role of Graphene in Graphene/p-Si Schottky Junction PEC 46
4.5 Graphene as passivation layer 49
4.6 Device performance 50
4.7 Summary 51
Chapter 5 Photo-deposited Pt co-catalysts on Graphene-silicon Schottky Junction for enhancing water splitting performance 52
5.1 Motivation 52
5.2 Reduced Pt through Impregnation Methods 54
5.2.1 Optical microscopy image of Pt-filled graphene 54
5.2.2 Linear sweep voltammetry results 56
5.3 The Background of Photo-deposition methods 57
5.4 Photo-deposition Pt through Graphene-silicon Schottky Junction 59
5.5 Characterization of Photo-deposited Pt 61
5.5.1 Optical microscopy and scanning electron microscopy 61
5.5.2 Auger electron spectroscopy 63
5.6 Device performances 64
5.7 Stability 65
5.8 Summary 66
Chapter 6 Future prospects 67
REFERENCE 68
dc.language.isoen
dc.subject蕭基接面zh_TW
dc.subject光電化學元件zh_TW
dc.subject產氫zh_TW
dc.subject產氫zh_TW
dc.subject光電化學元件zh_TW
dc.subject蕭基接面zh_TW
dc.subject石墨烯zh_TW
dc.subject石墨烯zh_TW
dc.subjectphotoelectrochemical cellen
dc.subjecthydrogen generationen
dc.subjectphotoelectrochemical cellen
dc.subjectSchottky junctionen
dc.subjectgrapheneen
dc.subjecthydrogen generationen
dc.subjectgrapheneen
dc.subjectSchottky junctionen
dc.title石墨烯與矽之蕭基接面光電化學元件於產氫之研究zh_TW
dc.titleGraphene-silicon Schottky Junction Photoelectrochemical Cells for Hydrogen Generationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee溫政彥(Cheng-Yen Wen),黃炳照(Bing-Joe Hwang),蘇威年(Wei-Nien Su)
dc.subject.keyword石墨烯,蕭基接面,光電化學元件,產氫,zh_TW
dc.subject.keywordgraphene,Schottky junction,photoelectrochemical cell,hydrogen generation,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201601253
dc.rights.note有償授權
dc.date.accepted2016-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved