Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5049
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道(Yuh-Daoh Lyuu)
dc.contributor.authorYong-Xin Tsaien
dc.contributor.author蔡永信zh_TW
dc.date.accessioned2021-05-15T17:51:18Z-
dc.date.available2017-08-25
dc.date.available2021-05-15T17:51:18Z-
dc.date.copyright2014-08-25
dc.date.issued2014
dc.date.submitted2014-08-17
dc.identifier.citation[1] Artzner, Philippe, Freddy Delbaen, Jean‐Marc Eber, and David Heath. “Coherent measures of risk.” Mathematical Finance 9, no. 3 (1999): 203–228.
[2] Bekiros, Stelios D., and Dimitris A. Georgoutsos. “Estimation of Value-at-Risk by extreme value and conventional methods: a comparative evaluation of their predictive performance.” Journal of International Financial Markets, Institutions and Money 15, no. 3 (2005): 209–228.
[3] Danielsson, Jon, and Casper G. De Vries. “Value-at-risk and extreme returns.” Annales d'Economie et de Statistique 60 (2000): 239–270.
[4] Danielsson, Jon, Laurens de Haan, Liang Peng, and Casper G. de Vries. “Using a bootstrap method to choose the sample fraction in tail index estimation.” Journal of Multivariate Analysis 76, no. 2 (2001): 226–248.
[5] De Haan, Laurens, and Ana Ferreira. Extreme value theory: An introduction. New York: Springer, 2007.
[6] Drees, Holger. “Extreme quantile estimation for dependent data, with applications to finance.” Bernoulli 9, no. 4 (2003): 617–657.
[7] Embrechts, Paul, Sidney I. Resnick, and Gennady Samorodnitsky. “Extreme value theory as a risk management tool.” North American Actuarial Journal 3, no. 2 (1999): 30–41.
[8] Gencay, Ramazan, and Faruk Selcuk. “Extreme value theory and value-at-risk: relative performance in emerging markets.” International Journal of Forecasting 20, no. 2 (2004): 287–303.
[9] Jorion, Philippe. Value at risk: the new benchmark for controlling market risk. Vol. 2. New York: McGraw–Hill, 1997.
[10] McNeil, Alexander J., and Rudiger Frey. “Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach.” Journal of Empirical Finance 7, no. 3 (2000): 271–300.
[11] Poon, Ser-Huang, Michael Rockinger, and Jonathan Tawn. “Extreme value dependence in financial markets: Diagnostics, models, and financial implications.” Review of Financial Studies 17, no. 2 (2004): 581–610.
[12] Resnick, Sidney I. Heavy-tail phenomena: Probabilistic and statistical modeling. New York: Springer, 2007.
[13] Rockafellar, R. Tyrrell, and Stanislav Uryasev. “Conditional value-at-risk for general loss distributions.” Journal of Banking & Finance 26, no. 7 (2002): 1443–1471.
[14] Singh, Abhay K., David E. Allen, and Powell J. Robert. “Extreme market risk and extreme value theory.” Mathematics and Computers in Simulation 94 (2013): 310–328.
[15] Shiller, Robert J. The subprime solution: How today’s global financial crisis happened, and what to do about it. Princeton, NJ: Princeton University Press, 2008.
[16] Taleb, Nassim Nicholas. “Black swans and the domains of statistics.” The American Statistician 61, no. 3 (2007): 198–200.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5049-
dc.description.abstract全球金融危機激起人們對黑天鵝事件的關注,黑天鵝事件代表極值發生的事件,預測極值發生的週期與程度是極具有挑戰性。使用極值理論來估算風險值與條件風險值可以計算出在極端事件發生時,在特定信心水準下的資產損失與相對應的期望資產損失。本論文使用具有金融報酬特性的合成資料作為研究資料,可以避開真實市場資料所受的變數繁雜而不利分析的缺點。使用的合成資料分為靜態與動態兩種,靜態資料是由常態分布、Student’s t 分布或對數常態分布隨機抽樣產生的資產損失,動態資料是利用自我迴歸移動平均模型、自我迴歸條件異質變異數模型與Student’s t 函數的殘差分布所產生的時間序列。利用極值理論估算風險值與條件風險值的方法區分為靜態方法與動態方法,靜態方法有區塊最大法與穿越門檻值法,動態方法利用動態模型、穿越門檻值法以及拔靴法來作估算。對於靜態資料而言,區塊最大法與穿越門檻值法對於不同的損失分布所估算出的結果,和樣本值或理論值的關係無法維持一定的趨勢。對於動態資料而言,動態方法所算出的結果,不論其變異數模型是否為定數,皆較於樣本值接近理論值但是小於理論值,具有一定的趨勢。zh_TW
dc.description.abstractThe global financial crisis in 2008 has raised concerns on the events so called “the Balck Swans”. Evaluating value at risk and conditional value at risk using the extreme value theory can produce the asset loss and the corresponding expected asset loss at certain confidence level under extreme circumstances. This paper uses the synthetic data characteristic of financial returns as research targets, and in this way, we can avoid the drawbacks of analyzing the real market data which are affected by ambiguous variables. There are two types of synthesized data: static data and dynamic data. Static data are asset losses which are randomly sampled from the normal distribution, the Student’s t distribution and the log normal distribution, respectively. Dynamic data are time series generated by using the autoregressive moving average model, the autoregressive conditional heteroscedasticity model. There are two methods to evaluate the value at risk and the conditional value at risk using the extreme value theory: the static method and the dynamic method. The static method includes the block maxima method and the peaks over the threshold. The dynamic method integrates the dynamic model, the peaks over the threshold and the bootstrap sampling to evaluate the risk. For static data, there is no definite relation between statistics calculated from samples, theoretical values and the results calculated by the static method. For the dynamic data, there is a definite relation between the results calculated by the dynamic method, statistics calculated from samples, theoretic values and the results calculated by the dynamic method.en
dc.description.provenanceMade available in DSpace on 2021-05-15T17:51:18Z (GMT). No. of bitstreams: 1
ntu-103-R97922100-1.pdf: 1401254 bytes, checksum: acd7bb90a6d55b3e6fa35bc5221975a2 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
大綱 iv
表格 v
第一章 研究動機 1
第二章 研究方法 3
第一節 區塊最大法(Block Maxima Model; BMM) 3
第二節 穿越門檻值法(Peaks Over the Threshold ; POT) 5
第三節 動態方法 8
第三章 分析與討論 10
第一節 合成資料說明 10
第二節 靜態方法估算風險值與條件風險值 12
第三節 動態模型估算風險值與條件風險值 15
第四章 結論 17
附錄 18
參考資料 19
dc.language.isozh-TW
dc.subject非對稱性冪級數自我迴歸條件異質變異數模型zh_TW
dc.subject極值理論zh_TW
dc.subject風險值zh_TW
dc.subject條件風險值zh_TW
dc.subject區塊最大法zh_TW
dc.subject穿越門檻值模型zh_TW
dc.subject自我迴歸移動平均模型zh_TW
dc.subjectconditional value at risken
dc.subjectasymmetric power ARCH modelen
dc.subjectautoregressive moving average modelen
dc.subjectpeaks over the thresholden
dc.subjectextreme value theoryen
dc.subjectvalue at risken
dc.subjectblock maxima methoden
dc.title使用極值理論評估具金融報酬特性的合成資料之風險值與條件風險值zh_TW
dc.titleEvaluating the VaR and Conditional VaR of the Synthesized Data Characteristic of Financial Returns Using the Extreme Value Theoryen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee戴天時,張經略,王釧茹
dc.subject.keyword極值理論,風險值,條件風險值,區塊最大法,穿越門檻值模型,自我迴歸移動平均模型,非對稱性冪級數自我迴歸條件異質變異數模型,zh_TW
dc.subject.keywordextreme value theory,value at risk,conditional value at risk,block maxima method,peaks over the threshold,autoregressive moving average model,asymmetric power ARCH model,en
dc.relation.page20
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf1.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved