請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50491
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張育森(Yu-Sen Chang) | |
dc.contributor.author | Meng-Yuan Xi | en |
dc.contributor.author | 奚夢源 | zh_TW |
dc.date.accessioned | 2021-06-15T12:43:01Z | - |
dc.date.available | 2018-08-03 | |
dc.date.copyright | 2016-08-03 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-26 | |
dc.identifier.citation | 李霞、安雪、金紫霖、潘會堂、張啟翔. 2010. 植物色彩對人生理和心理影響的研究進展. 湖北農業科學 49:1730-1733.
高金暉、王冬梅、趙亮、王多棟. 2007. 植物葉片滯塵規律研究—以北京市為例. 北京林業大學學報 29:94-99. 高榮孚、張鴻明. 2002.植物光調控的研究進展.北京林業大學學報. 24:235-242. 郭德才. 2002. 在五彩繽紛的世界裡:色彩對人體和植物的影響. 科學24 小時. (9):14. 何明昱. 2012. 室內植物移除二氧化碳能力之研究. 國立臺灣大學園藝學研究所碩士論文. 臺北. 黃照婷、林晏州. 2007. 草花配色對色彩偏好及色知覺之影響. 臺灣園藝53:481-490. 謝吉容、李國昌、梁國魯. 2006. 大岩桐的研究概況及展望. 西南園藝 34:33-36. 陳娜. 2010. 鐵、鉀營養對越橘苗生長和生理特性的影響. 大連理工大學作物遺傳育系種碩士論文. 中國. 陳彥宇. 2007. 常見室內植物對甲醛及二氧化碳之吸收及反應. 國立臺灣大學植物病理與微生物學研究所碩士論文. 臺北. 張俊彥. 2000. 造園設計中植栽色彩對觀賞者效益之研究. 造園學報 7:45-65. 張育森. 2003. 都市地被植物之選擇與應用方式對改善空氣品質之影響. 行政院環境保護署. 臺北. 葉德銘. 2008. 淨化室內空氣之植物應用及管理手冊. 行政院環境保護署. 臺北. 阮漢成. 2010. 不同室內觀葉植物搭配光源頻譜變化對室內化學污染物質濃度減低效果之探討. 成功大學建築學系碩士在職專班學位論文. 臺南. 曾怡錦、歐聖榮. 1999. 草花色彩之情緒體驗研究. 興大園藝 24:93-102. 蔡志明. 2004. 空氣污染微粒在植物表面之沈降與脫離. 國立臺灣大學森林研究所碩士論文. 臺北. 歐聖榮、陳博仁、傅克昌. 1991. 六種觀賞植物色彩情感效應之研究. 興大園藝 16:33-43. 歐聖榮、曾怡錦. 2001. 不同草花色彩配置環境之偏好研究. 造園學報 7:121-135. 楊恭毅. 1984. 楊氏園藝植物大名典, p. 6490-6497. 楊青造園企業. 中國花卉雜誌社, 臺北. Ainsworth, E.A. and A. Rogers. 2007. The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ. 30:258. Anzelika, Renata, Silva. 2007. In vitro cultivation of grape culture under solid-state lighting. scientific works of the Lithuanian institute of horticulture and lithuanian university of agriculture.26(3):235-245. Arp, W. J., and B. G. Drake. 1991. Increased photosynthetic capacity of Scirpus oineyi after 4 years of exposure to elevated CO2. Plant Cell Environ. 14:1003-1006. Barthlott, W. and C. Neinhuis. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1-8. Bik, R. A. 1976. Quality in Anthurium andraeanum and Aechmea fasciate growth in peat substrates as affected by nitrogen and potassium nutrition. Acta Hort. 64:83-91. Bloom, A. J., J. S. R. Asensio, L. Randall, S. Rachmilevitch, A. B. Cousins, and E. A. Carlisle. 2012. CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants. Ecology 93:355-367. Bloom, A. J., M. Burger, J. S. R. Asensio, and A. B. Cousins. 2010. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899-903. Bloom, A. J.. 2006. Perspective rising carbon dioxide concentrations and the future of crop production. J Sci Food Agric 86:1289-1291. Bremner. J. M. and C. S. Mulvaney. 1982. Nitrogen-total. p.595-624. In: Page, A. L., H. Miller and D. R. Keeney (eds.). Methods of Soil Analysis. Part 2. Academic Press, Inc., New York. Dufour, L., Gue´rin, V., 2003. Growth, development features and flower production of Anthurium andreanum Lind. in tropical conditions. Sci. Hort. 98, 25–35. Gollan, T., N. Turner, and E. Schulze. 1985. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. Oecologia 65:356-362. Gunderson, C. A., R. J. Norby, and S. D. Wullschleger. 1993. Foliar gas exchange responses of two deciduous hardwoods during 3 years of growth in eievated CO2: no loss of photosynthetic enhancement. Plant Cell Environ. 16:797-807. Hamrick, D. 2003. Sinningia, p. 643-645. In: D. Hamrick (ed.). Ball redbook 17th edition. Ball Publishing. Batavia. Han, K.T. 2009. Influence of limitedly visible keafy indoor plants on the psychology, behavior, and health of students at a junior high school in Taiwan. Environ. Behavior 41:658-692. Henson, D.Y. 2005. Performance of 19 species of bedding plants and Kentucky bluegrass grown at decreasing levels of irrigation. M.S. Thesis, Dept. Horticulture & Landscape Architecture, Colorado State Univ., CO, USA. Henson, D.Y., S.E. Newman, and D.E. Hartley. 2006. Performance of selected herbaceous annual ornamentals grown at decreasing levels of irrigation. HortScience 41:1481-1486. Héraut-Bront, V., C. Robin, C. Verlet-Grancher, D. Afif, and A. Guckert.1999. Light quality (red:far-red ratio): does it affect photosynthetic activity, net CO2 assimilation, and morphology of young white clover leaves? Can. J. Bot. 77:1425-1431. Hoad, S.P., and R.R.B. Leakey. 1994. Effects of light quality on gas exchange and dry matter partitioning in Eucalyptus grandis W. Hill ex Maiden. Forest Ecol. Manage. 70:265-273. Hoddinott, J., and R. Scott. 1996. The influence of light quality and carbon dioxide enrichment on the growth and physiology of seedlings of three conifer species. Growth responses. Can. J. Bot. 74:383-390. Hsiao, T.C. 1973. Plant responses to water stress. Annu. Rev. Plant Physiol. 24:519-570. Hsiao, T.C. and E. Acevedo. 1974. Plant responses to water deficits, water-use efficiency and drought resistance. Agr. Meteorol. 14:59-84. Huan, L.V.T. and M. Tanaka. 2004. Effects of red and blue light-emitting diodes on callusinduction,callus proliferation,and protocorm-like body formation from callus in cymbidium orchid. Environ Control in Biol., 42:57-64. Ismail, M.R. and K.M. Noor. 1996. Growth and physiological processes of young starfruit (Averrhoa carambola L.) plants under soil flooding. Scientia Hort. 65:229-238. Jin, S.H., J.Q. Huang, X.Q. Li, B.S. Zheng, J.S. Wu, Z.J. Wang, G.H. Liu, M. Chen, and Ü. Niinemets. 2011. Effects of potassium supply on limitations of photosynthesis by mesophyll diffusion conductance in. Tree Physiology 31:1142-1151. Kaufman, A.J. and V.I. Lohr. 2004. Does plant color affect emotional and physiological responses to landscapes? Acta hort.:229-233. Kim, J.H., R.E. Glick, and A. Melis. 1993. Dynamics of photosystem stoichiometry adjustment by light quality in chloroplasts. Plant Physiol. 89:932-940. Kim, K.J., M.J. Kil, J.S. Song, E.H. Yoo, K.C. Son, and S.J. Kays. 2008. Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. J. Amer. Soc. Hort. Sci. 133:521-526. Kitao, M., T. Hida, N. Eguchi, H. Tobita, H. Utsugi, A. Uemura, S. Kitaoka and T. Koike. 2015. Light compensation points in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2. Plant Biol. ISSN 1435-8603 Kondo, T., K. Hasegawa, R. Uchida, M. Onishi, A. Mizukami, and K. Omasa. 1995. Absorption of formaldehyde by oleander (Nerium indicum). Environ. Sci. Technol. 29:2901. Kundsen. D. and G. A. Peterson. 1982. Lithium, sodium, and potassium. p.225-246. In: Page, A. L., H. Miller and D. R. Keeney (eds.). Methods of Soil Analysis. Part 2. Academic Press, Inc., New York. Lawlor, D.W. and W. Tezara. 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. Ann. of Bot. 103:561-579. Li, J.T., B.H. Pan, and Y.C. Tian. 2010. Overview of research on purification role of indoor plants. Northern Hort. 11:214-216. Lohr, V. I. and C. H. Pearsonmims. 2006. Responses to scenes with spreading, rounded, and conical tree forms. Environment and Behavior 38(5):667-688. Malik, A.I., T.D. Colmer, H. Lambers, T.L. Setter, and M. Schortemeyer. 2002. Shortterm waterlogging has long‐term effects on the growth and physiology of wheat. New Phytol. 153:225-236. Marcuvitz, S., and R. Turkington. 2000. Differential effects of light quality, provided by different grass neighbours, on the growth and morphology of Trifolium repens L.(white clover). Oecologia 125:293-300. Mendes, Nemali, K.S. and M.W. van Iersel. 2008. Physiological responses to different substrate water contents: Screening for high water-use efficiency in bedding plants. J. Amer. Soc. Hort. Sci. 133:333-340. Park, S. H., H. R. Mattson. 2008. Effects of flowering and foliage plants in hospital rooms on patients recovering from abdominal surgery. HortTechnology. 18(4): 563-568. Pérez-López, U., A. Robredoa, M. Lacuestab, A. Mena-Petitea and A. Munoz-Rueda. 2012. Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare. Photosynth Res 111:269-283 Pérez-López, U., A. Robredoa, M. Lacuestab, C. Sgherric, A. Munoz-Rueda, F. Navari-Izzoc and A. Mena-Petitea. 2009. The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol. Plant. 135:29-42. Pérez-López, U., J. Miranda-Apodaca, A. Munoz-Rueda, and A. Mena-Petite. 2015. Interacting effects of high light and elevated CO2 on the nutraceutical quality of two differently pigmented Lactuca sativa cultivars (Blonde of Paris Batavia and Oak Leaf). Sci. Hortic. 191:38-48. Pérez-López, U., J. Miranda-Apodaca, A. Munoz-Rueda, and A. Mena-Petite. 2015. Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2. J. Plant Physiol. 170:1517-1525. Poudel, P. R., I. Kataoka, R. Mochioka. 2008. Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Culture (92):147-153. Qin, J., C. Sun, X. Zhou, H. Leng, and Z. Lian. 2014. The effect of indoor plants on human comfort. Indoor and Built Environ. 23:709-723. Sánchez-Rodríguez, E., M. Rubio-Wilhelmi, L.M. Cervilla, B. Blasco, J.J. Rios, R. Leyva, L. Romero, and J.M. Ruiz. 2010. Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions. Plant Soil 335:339-347. Shibata, S. and N. Suzuki. 2004. Effects of an indoor plant on creative task performance and mood. Scandinavian Journal of Psychology 45:373-381. Shibata, S., N. Suzuki. 2004. Effects of an indoor plant on creative task performance and mood. Scandinavian J. of Psychology. 45: 373-381. Sicher, R. C., and J. A. Bunce. 1997. Relationship of photosynthetic acclimation to changes of Rubisco activity in field-grown winter wheat and barley during growth in elevated carbon dioxide. Photosynth. Res. 52:27–38. Taft, C. 1997. Color meaning and context: comparisons of semantic ratings of colors on samples and objects. Color Research and Application 22(1):40-50. Talbott, J., D. Stern, J. Ross, and C. Gillen. 1976. Flowering plants as a therapeutic/environmental agent in a psychiatric hospital. Hortscience 11:365-366. Van Iersel, M.W., S. Dove, J.G. Kang, and S.E. Burnett. 2010. Growth and water use of petunia as affected by substrate water content and daily light integral. HortScience. 45:277-282. Watanabe, M., S. Kitaoka, N. Eguchi, Y. Watanabe, T. Satomura, K. Takagi, F. Satoh, and T. Koike. 2015. Photosynthetic traits of Siebold’s beech seedlings in changing light conditions by removal of shading trees under elevated CO2. Plant Biol. ISSN 1435-8603 Wolverton, B. and J.D. Wolverton. 1993. Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. J. Miss. Acad. Sci. 38:11-15. Wood, R., M. Burchett, R. Alquezar, R. Orwell, J. Tarran, and F. Torpy. 2006. The potted-plant microcosm substantially reduces indoor air VOC pollution: I. office field-study. Water, Air, and Soil Pollution 175:163-180. Wood, R., R. Orwell, and M. Burchett. 1999. Study of absorption of VOCs by commonly used indoor plants. Proc.: Indoor Air 99:690-694. Xiong, J., G.G. Patil, and R. Moe. 2002. Effect of DIF and end-of-day light quality on stem elongation in Cucumis Sativus. Sci. Hortic. 94:219-229. Yang, H.M. and G.X. Wang. 2001. Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment. Acta Phytoecologica Sinica 25: 312-316. Yassi, A. 2001. Basic environmental health. Oxford University Press, Oxford. Yoo, M.H., Y.J. Kwon, K.C. Son, and S.J. Kays. 2006. Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants. J. Amer. Soc. Hort. Sci. 131:452-458. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50491 | - |
dc.description.abstract | 室內空氣流通性差,長時間處於封閉環境會影響人類的身心健康,在室內擺放植物不僅有效淨化空氣,還可使人心情愉悅,提升生活品質。植物可有效吸收二氧化碳(Carbon dioxide, CO2),然而環境因子如光、水分等的改變會改變植物淨化二氧化碳的效率。為使對室內觀賞植物的日常管理能最大限度地提升二氧化碳淨化效果和植物的觀賞等級,本研究針對室內環境下的火鶴(Anthurium andraeanum Linden ‘Pink Champion’)、麗格秋海棠(Begonia elatior hybrids)以及大岩桐(Sinningia speciosa Benth)進行了介質含水量、鉀肥、光質及環境二氧化碳濃度的管理試驗。此外,為提升室內觀賞植物配置的視覺效果,還進行了對植物花色與環境搭配的民眾偏好調查。
在水分管理方面,對三種植物進行四種水分處理,分別為20%、40%、60%及80%田間容水量(Field Capacity, FC),調查其形態、光合作用及植生指數,並進行熏氣箱試驗,期以尋找室內植物觀賞期和淨化能力的水分管理平衡點。結果顯示,火鶴、麗格秋海棠及大岩桐均在60% FC復水時有最大二氧化碳淨化能力;火鶴在40%-60% FC復水時觀賞等級最高,麗格秋海棠和大岩桐均在60%-80% FC復水時觀賞等級最高。 在鉀肥管理方面,對三種植物進行五種鉀肥濃度處理,分別為0、2、4、6、8 mM,調查其形態、光合作用及植生指數,並進行熏氣箱試驗,期以尋找室內植物觀賞期和淨化能力的鉀肥管理平衡點。試驗結果顯示,火鶴、麗格秋海棠及大岩桐均在8 mM鉀肥處理下有最大二氧化碳淨化能力;火鶴在各鉀肥處理下觀賞等級均佳,麗格秋海棠於0-4 mM鉀肥處理下觀賞等級最高,大岩桐於6-8 mM鉀肥處理下觀賞等級最高。 在光質管理方面,對三種植物進行兩種光質處理,分別為LED白光和LED(R7/B2),調查其形態、光合作用及植生指數,並進行熏氣箱試驗,期以尋找室內植物觀賞等級和淨化能力更佳的光質管理。結果顯示,火鶴、麗格秋海棠及大岩桐均在LED白光處理下有最大二氧化碳淨化能力和觀賞等級。在環境二氧化碳濃度方面,對火鶴和大岩桐進行四個濃度的環境CO2濃度處理,分別為500 ppm、1200 ppm、2400 ppm以及4800 ppm,調查短期內其對CO2吸收能力,期以尋找適合室內植物的CO2濃度管理。結果顯示,火鶴與大岩桐均在2400 ppm處理下有最高二氧化碳吸收量。其次是4800 ppm和1200 ppm處理,吸收量最少的是500 ppm處理。 在室內植物花色配置之民眾偏好調查方面,選用六種花色不同的麗格秋海棠(黃、橙、紅、粉、藍、白),與不同室內環境組合(客廳、餐廳、臥室、衛浴室),記錄影像並通過問卷方式,進行大眾偏好之調查。結果顯示,結果顯示民眾對客廳中花色偏好的順序依次是黃色、紅色、白色、粉色、橙色及藍色;餐廳中花色偏好的順序依次是黃色、白色、橙色、粉色、紅色及藍色;單人房中花色偏好的順序依次是黃色、白色、藍色、粉色、橙色及紅色;衛浴室中花色偏好的順序依次是藍色、白色、粉色、黃色、紅色及橙色。而在花色給人帶來的色知覺上,四個環境中均是“柔和平靜”的有效百分比數最高,其次是“輕快活潑”,百分比最低的是“華麗顯眼”。 綜合言之,室內植物水分管理上建議灌溉點為60% FC,對於光合作用速率高的植物澆水頻度約為4天,光合作用速率低的植物澆水頻度約為7天,期能在節約水資源的同時,延長室內植物的觀賞壽命並提升淨化CO2能力。室內植物鉀肥管理上需依植物特性而論,對於自身光合作用高的植物,移進室內後可施用鉀肥來幫助其保持原有氣孔導度及光合作用速率,以此延長其觀賞壽命;對於自身光合作用低的植物,在室內光線滿足其需求時,使用高濃度鉀肥反而會加速其代謝而使觀賞期縮短。室內植物光質管理上建議採用白光作為燈源較R7B2燈源更佳,在觀賞等級和CO2淨化能力兩者上皆為白光燈源處理更好,而在環境CO2濃度方面,植物在2400 ppm處理下有最大吸收量,建議室內CO2濃度超過3000 ppm時採用開窗通風的方法淨化空氣。民眾更偏好在客廳、餐廳及臥室使用黃色盆花,在衛浴室使用藍色盆花,且喜歡植物帶來的柔和平靜感。 | zh_TW |
dc.description.abstract | Inert air condition for the indoor environment usually causes negative impact on human health, especially for people with sedentary jobs in office and home. Placing indoor ornamentals can purify the air in the room but also offer people a good mood and evaluate the life quality. Plants can effectively absorb carbon dioxide (CO2), and its absorption efficiency is affected by environmental factors like light and water conditions. In order to elevate the purifying capacity of CO2 and the ornamental level of plants, this research studies the reaction of anthurium (Anthurium andraeanum Linden ‘Pink Champion’), begonia ( Begonia elatior hybrids) and sinningia( Sinningia speciosa Benth) under different cultivation conditions, which mainly in four aspects: water, potassium, light quality and elevated CO2 concentration. In addition to understand the pubic preference on indoor ornamentals color in different space, this research also conducted a survey on indoor ornamentals color matching.
For the water management aspect, we conducted four irrigation test with different treatments: 20%, 40%, 60%, 80% field capacity (FC) on the three plants mentioned above and investigated their morphology, photosynthesis, vegetation index and then determined their ability of CO2 absorption by taking a fumigation test. The result shows that anthurium, begonia and sinningia all have highest CO2 absorption under 60% FC treatment. Anthurium has highest ornamental level when irrigated at 40%-60% FC. Begonia and sinningia both have highest ornamental level when irrigated at 60%-80% FC. In the potassium management test, we conducted five potassium concentration treatments: 0, 2, 4, 6, 8 mM on the three plants mentioned above and investigated their morphology, photosynthesis, vegetation index and then determined their ability of CO2 absorption by taking a fumigation test. The result shows that anthurium, begonia and sinningia all have highest CO2 absorption under 8 mM treatment. Anthurium has highest ornamental level under all potassium treatments. Begonia has highest ornamental level under 0~4 mM treatments. Sinningia has highest ornamental level under 6~8 mM treatments. In the light quality management test, we conducted two LED (light-emitting diode) treatments: white and R7B2 (red/blue=7/2) on the three plants mentioned above and investigated their morphology, photosynthesis, vegetation index and then determined their ability of CO2 absorption by taking a fumigation test in order to find the best condition for maximizing CO2 absorption and ornamental level. The result shows that anthurium, begonia and sinningia all have highest CO2 absorption and ornamental level under white treatment. In the elevated CO2 concentration test, we conducted four CO2 concentration treatments: 500 ppm, 1200 ppm, 2400 ppm and 4800 ppm on anthurium and sinningia and determined their ability of CO2 absorption in short term by taking a fumigation test. The result shows that they both have highest CO2 absorption under 2400 ppm treatment, then 4800 ppm, 1200 ppm and 500 ppm. Besides the lab experiments mentioned above, we also conducted a survey on indoor ornamentals color matching. We use pictures with 6 different colored begonia (yellow, orange, red, pink, blue and white) combined with 4 different indoor environments (living room, dinning room, bedroom and bathroom) to conduct a public preference survey. The statistics shows color preference order in living room is yellow, red, white, pink, orange, blue. Preference order in dining room is yellow, white, orange, pink, red, blue. And in bedroom: yellow, white, blue, pink, orange and red; in bathroom the order reverses: blue, white pink, yellow, red and then orange. In terms of color perception, the highest rank is termed as “Soft and Calm”, then “Lilting”. “Gorgeous” or “Dazzling” kind environments are the least preferred. To sum up, we recommend the irrigation treatment for indoor plants as 60% field capacity. The irrigation frequency for high photosynthesis rate plants is one per 4 days, one per 7 days for low photosynthesis rate plants. This condition balances the best between water conservation and elevating CO2 absorption. The potassium managements are quite dependent on plant characteristics. High potassium is recommended for high photosynthesis rate plants in order to maintain stomatal conductance and photosynthesis rate. However high potassium concentration may accelerate metabolism for low photosynthesis plants and shorten the lifetime for ornamentation. In our study we find pure white light would be better for indoor plant growing, and CO2 absorption reaches the bottleneck when the CO2 concentration exceeds 2400ppm. Thus air exchange is needed when the concentration is higher than 3000ppm. Public survey shows yellow colored plants preference in living room, dining room and bedroom, and blue preference in bathroom. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:43:01Z (GMT). No. of bitstreams: 1 ntu-105-R03628136-1.pdf: 19064066 bytes, checksum: 6770c01b5ca6333b36ceeb5d98e19d2e (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii 目錄 vi 表目錄 viii 圖目錄 ix 附錄目錄 xi 第一章 前言 1 第二章 前人研究 3 一、室內空氣與室內植物 3 二、室內植物淨化二氧化碳 4 三、火鶴之生長習性與栽培技術 4 四、麗格秋海棠之生長習性與栽培技術 5 五、大岩桐之生長習性與栽培技術 6 六、植物之水分管理 7 七、植物之鉀肥管理 8 八、植物之光質管理 8 九、環境二氧化碳濃度對植物之影響 9 十、植物色彩對人之影響 9 第三章 室內植物之水分管理 11 摘要(Abstract) 11 一、前言(Introduction) 12 二、材料與方法(Materials and Methods) 13 三、結果(Results) 18 四、討論(Discussion) 26 第四章 室內植物之鉀肥管理 49 摘要(Abstract) 49 一、前言(Introduction) 50 二、材料與方法(Materials and Methods) 51 三、結果(Results) 56 四、討論(Discussion) 61 五、結論(Conclusion) 63 第五章 室內植物之光質及環境CO2管理 81 摘要(Abstract) 81 一、前言(Introduction) 82 二、材料與方法(Materials and Methods) 83 三、結果(Results) 88 五、結論(Conclusion) 95 第六章 室內植物花色配置之民眾偏好調查 113 摘要(Abstract) 113 一、前言(Introduction) 114 二、材料與方法(Materials and Methods) 115 三、結果(Results) 117 四、討論(Discussion) 122 五、結論(Conclusion) 123 第七章 結論 130 參考文獻(Reference) 132 附錄(Appendix) 141 | |
dc.language.iso | zh-TW | |
dc.title | 室內盆花管理與色彩偏好之探討 | zh_TW |
dc.title | Studies on Management and Color Preference of Indoor Potted Flowers | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉德銘(Der-Ming yeh),黃光亮(Kuang-Liang Huang),張自健(Tzu-Chien Chang) | |
dc.subject.keyword | 火鶴,大岩桐,麗格秋海棠,淨化空氣,觀賞等級,色彩偏好, | zh_TW |
dc.subject.keyword | anthurium,begonia,sinningia,air purify,ornamental level,color preference, | en |
dc.relation.page | 154 | |
dc.identifier.doi | 10.6342/NTU201601250 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-27 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 18.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。