Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50489
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林頌然(Sung-Jan Lin)
dc.contributor.authorChun-Kai Linen
dc.contributor.author林群凱zh_TW
dc.date.accessioned2021-06-15T12:42:55Z-
dc.date.available2021-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-27
dc.identifier.citation1.Janetta B. & Philippa B., Aromadermatology: Aromatherapy in the Treatment and Care of Common Skin Conditions. Radcliffe Publishing 1-11 (2006).
2.Nakagawa H, editor. Dermatological disorders. In: Symphonia Medica Nursing. Nakayama-Shoten. 19, 3 (2001).
3.R. Randall Wickett & Marty O. Visscher, Structure and function of the epidermal barrier. AJIC 34, S98-S110 (2006).
4.Maolis P., Ingo H. & Frank O.N., Mechanisms regulating skin immunity and inflammation. Nature Immunology 14, 289-301 (2014).
5.Luke C.D. et al., Tissue-resident macrophages. Nature Immunology 14, 986-995 (2013).
6.Babak M.D. et al., Macrophages in skin injury and repair. Immunobiology 216, 753-762 (2011).
7.Shao-wei Lu et al., Clodronate liposomes reduce excessive scar formation in a mouse model of burn injury by reducing collagen deposition and TGF-β1 expression. Mol. Biol. Rep. 41, 2143-2149 (2014).
8.Chih-Chiang Chen et al., The Modulatable Stem Cell Niche: Tissue Interaction during and Feather Follicle Regeneration. J. Mol. Biol. 428, 1423-1440 (2016).
9.Marlon R.S., Ruth S. & Ralf P., The Hair Follicle as a Dynamic Miniorgan. Current Biology 19, R132-R142 (2009).
10.Sven M. et al., A comprehensive Guide for the Accurate Classification of Murine Hair Follicles in Distinct Hair Cycle Stages. J. Invest. Dermatol. 117, 3-15 (2001).
11.K.S. Stenn & Ralf Paus, Controls of Hair Follicle Cycling. Physiological Reviews 81, 449-494 (2001).
12.Laura A. & Elaine F., The hair cycle. Journal of Cell Science 119, 391-393 (2006).
13.Hansen L.S. et al., The influence of the hair cycle on the thickness of the mouse skin. Anat. Rec. 210, 569-573 (1984).
14.Plikus M. et al., Cyclic dermal BMP signaling regulates stem cell activation during hair regeneration. Nature 451, 340-344 (2008).
15.Eric F. et al., Adipocyte Lineage Cells Contribute to the Skin Stem Cell Niche to Drive Hair Cycling. Cell 146, 761-771 (2011).
16.Donatello C., Ralf P. & Mirna P., Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells. PLOS Biology 12, e1002002 (2014).
17.A.M. Hillmer et al., Genetic variation in the human androgen receptor gene is the major determinant of common early-onset androgenetic alopecia. Am. J. Hum. Genet. 77, 140-148 (2005).
18.T. Andi et al., WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643-653 (2002).
19.M.H. Kwack et al., Dihydrotesterone-inducible dickkopf 1 from balding dermal papilla cells causes apoptosis in follicular keratinocytes. J. Invest. Dermatol. 128, 262-269 (2008).
20.D.R. Chesire & W.B. Issac, Ligand-dependent inhibitionn of beta-catenin/TCF signaling by androgen receptor. Oncogene 21, 8453-8469 (2002).
21.K. Yano, L.F. Brown & M. Detmar, Control of hair growth and follicle size by VEGF-mediated angiogenesis. J. Clin.Invest. 107, 409-417 (2001).
22.H.S. Oh & R.C. Smart, An estrogen receptor pathway regulates the telogen:anagen hair follicle transition and influences epidermal cell proliferation. Proc. Natl. Acad. Sci. USA 93, 12525-12530 (1996).
23.H.M. Hu et al., Estrogen leads to reversible hair cycle retardation through inducing premature catagen and maintaining relogen. PLoS One 7, e40124 (2012).
24.Peus D. & Pittelkow M.R., Growth factors in hair organ development and the hair growth cycle. Dermatol. Clin. 14, 559-572 (1996).
25.Stenn K.S. et al., Hair follicle growth controls. Dermatol. Clin 14, 543-558 (1996)
26.Lindner G. et al., Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. FASEB J. 14, 319-332 (2000)
27.Sun-Young Yoon et al., A role of placental growth factor in hair growth. Journal of Dermatological Science 74, 125-134 (2014)
28.Tao T., Nahyun K. & Taesun P., Topical application of oleropien induces anagen hair growth in telogen mouse skin. PLoS ONE 10, e0129578 (2015).
29.Y.C. Hsu, H.A. Pasolli & E. Fuchs, Dynamics between stem cells, niche and progeny in the hair follicle. Cell 144, 92-105 (2011).
30.V. Greco et al., A two-step mechanism for stem cell activation during hair regeneration Cell Stem Cell 4, 155-169 (2009).
31.Collins H.H., Studies of normal moult and of artificially induced regeneration of pelage in Peromyseus. J. Exp. Zoöl. 27, 73-95 (1918).
32.Lorna T.D., Studies on the expression of genetic hairlessness in the house mouse (mus musculus). J. Exp. Zoöl. 68, 501-518 (1934).
33.Chase H.B., Growth of the Hair. Physiol. Rev. 34, 113-126 (1954).
34.Silver, A.F. & Chase, H.B., The incorporation of tritiated uridine in hair germ and dermal papilla during dormancy (telogen) and activation (early anagen). Dev. Biol. 21, 440–451 (1970).
35.Caroline W. et al., Cells within the bulge region of mouse hair follicle transiently proliferate during early anagen: heterogeneity and functional differences of various hair cycles. Differentiation 55, 127-136 (1994).
36.Shigetoshi S. et al., Two distinct signaling pathways in hair cycle induction: Stat3-dependent and -independent pathways. PNAS 97, 13824-13829 (2000).
37.Kligman A.M. & Strauss J.S., The formation of vellus hair follicles from human adult epidermis. J. Invest. Dermatol. 27, 19-23 (1956).
38.Billingham R.E. & Russell P.S., Incomplete wound contracture and the phenolon of hair neogenesis in rabbits’ skin. Nature 177, 791-792 (1956).
39.Breedies C., Regeneration of hair follicles and sebaceous glands from the epithelium of scars in the rabbit. Cancer Research 14, 575-579 (1954).
40.Ito M. et al., Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Medicine 11, 1351-1354 (2005).
41.Ito M. et al., Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316-320 (2007).
42.Cheng-Ming Chuong, Regenerative biology: New hair from healing wounds. Nature 447, 265-266 (2007).
43.Nao Osaka et al., ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. J. Cell Biol. 176, 903-909 (2007).
44.Shu Jiang et al., Small cutaneous wounds induce telogen to anagen transition of murine hair follicle stem cell. Journal of Dermatological Science 60, 143-150 (2010).
45.Chih-Chiang Chen et al., Organ-Level Quorum Sensing Directs Regeneration in Hair Stem Cell Populations. Cell 161, 277-290 (2015).
46.Dan S., Adriene Lee & Rosemary N., Irritant contact dermatitis: A review. Australasian Journal of Dermatology 49, 1-11 (2008).
47.Saint-Mezard P. et al., Allergic contact dermatitis. Eur. J. Dermatol. 14, 284-295 (2004).
48.Hui-Jun Ma et al., Acquired Localized Hypertrichosis Induced by Internal Fixation And Plaster Cast Application. Ann. Dermatol. 25, 365-367 (2013).
49.M.W. Yuen et al., Acquired localised hypertrichosis in a Chinese child after cast immobilization. Hong Kong Med. J. 31, 369-371 (2015).
50.A. di Narto et al., Sodium lauryl sulfate(SLS) induced irritant contact dermatitis : a correlation study between ceramides and in vivo parameters of irritation. Contact Dermatitis 35, 86-91 (1996).
51.Hongbo Zhai & Howard I.M., Skin occlusion and irritant and allergic contact dermatitis: an overview. Contact Dermatitis 44, 201-206 (2001).
52.Moon S.H. et al., Pathological findings in cumulative irritation induced by SLS and croton oil in hairless mice. Contact Dermatitis 44, 240-245 (2001).
53.Emanuela C. & Corrado L.G., Cytokines and irritant contact dermatitis. Toxicology Letters 102-103, 277-282 (1998).
54.Haur Yueh Lee et al., Cytokines and Chemokines in Irritant Contact Dermatitis. Mediators of Inflammation 2013, 1-7 (2013).
55.Jean M. Daley et al., Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. Journal of Leukocyte Biology 83, 64-70 (2008).
56.Felix C. Weber et al., Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity. J. Exp. Med. 212, 15-22 (2015).
57.Shao-wei Lu et al., Clodronate liposomes reduce excessive scar formation in a mouse model of burn injury by reducing collagen deposition and TGF-β1 expression. Mol. Biol. Rep. 41, 2143-2149 (2014).
58.Robert Roskoski Jr., Sunitinib: A VEGF and PDGF receptor protein kinase and angiogenesis inhibitor. Biochemical and Biophysical Research Communications 356, 323-328 (2007).
59.Shem Patyna, Nonclinical safety evaluation of sunitinib: a potent inhibitor of VEGF, PDGF, KIT FLT3, and RET receptors. Toxicologic Pathology 36, 905-916 (2008).
60.P. Zhou et al., Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Genes & development 9, 700-713 (1995).
61.Yi Zhang et al., Lef-1 contributes to the differentiation of bulge stem cells by nuclear translocation and cross-talk with the Notch signaling pathway. Int. J. Med. Sci. 10, 738-746 (2013).
62.Yeon Sook Choi et al., Distinct Functions for Wnt/b-Catenin in Hair Follicle Stem Cell Proliferation and Survival and Interfollicular Epidermal Homeostasis. Cell Stem Cell 13, 720-733 (2013).
63.Alberto Mantovani et al., Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology 11, 519-531 (2011).
64.Sébastien Jaillon et al., Neutrophils in innate and adaptive immunity. Seminars in Immunopathology 35, 337-394 (2013).
65.David IR Holmes & Ian Zachary, The vascular endothelial growth factor(VEGF) family: angiogenic factors in health and disease. Genome Biology 6, 209 (2005).
66.C. J. Bae et al., IL-6, VEGF, KC and RANTES are major cause of a high irritant dermatitis to phthalic anhydride in C57BL/6 inbred mice. Allergology International 59, 389-397 (2010).
67.S. Palacio, D. Schmitt, and J. Viac, Contact allergens and sodium lauryl sulphate upregulate vascular endothelial growth factor in normal keratinocytes. The British Journal of Dermatology 137, 540-544 (1997).
68.Shigetoshi S., Kunihiko Y., and Satoshi I. T., Tissue regeneration: Hair follicle as a model. Journal of Investigative Dermatology Symposium Proceedings 6, 43-48 (2001).
69.David E. & Chien-kuo Lee, What does Stat3 do? J. Clin. Invest. 109, 1143-1148 (2002).
70.Satish L.D. et al., Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J. Interferon Cytokine Res. 29, 313-326 (2009).
71.Antita E.M. Dirkx et al., Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. Journal of Leukocyte Biology 80, 1183-1196 (2006).
72.F. O. Martinez & S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).
73.Daniel R. Sharda et al., Regulation of Macrophage Arginase Ecpresstion and Tumor Growth by the Ron Receptor Tyrosine Kinase. J. Immunol. 187, 2181-2192 (2011).
74.Chrystelle L., Michel A-L., and Beat A.I. Dual role of macrophages in tumor growth and angiogenesis. Journal of Leukocyte Biology 80, 705-713 (2006).
75.Volck B. et al., YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils. Proc. Assoc. Am. Physicians 110, 351-360 (1998).
76.Junker N. et al., Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer. Lung Cancer 48, 223-231 (2005).
77.Michael F. et al., A YKL-40-Neutrolizing Antibody Blocks Tumor Angiogenesis and Progression: A Potential Therapeutic Agent in Cancers. Mol. Cancer Ther. 10, 742-751 (2011).
78.Dafna B.-B. et al., Astrocyte and Macrophage Regulation of YKL-40 Expression and Cellular Response in Neuroinflammation. Brain Pathol. 22, 530-546 (2012).
79.Shao R. YKL-40 acts as an angiogenic factor to promote tumor angiogenesis. Front Physiol. 28, Article 122.
80.Sandro D.F. The discovery of placenta growth factor and its biological activity. Experimental & Molecular Medicine 44, 1-9 (2012).
81.Kiichiro Y., Lawrence F.B. & Michael D. Control of hair growth and follicle size by VEGF-mediated angiogenesis. J. Clin. Invest. 107, 409-417 (2001).
82.Wei Li et al., VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK. Experimental Cell Research 318, 1633-1640 (2012).
83.Laura P., Andrea L. & Jacequeline B., Stat3 is required for the development of skin cancer. The Journal of Clinical Investigation 114, 619-622 (2004).
84.Shigetoshi S. et al., Stat3 links activated keratinocytes and immunocytes required for development of psoriasis in a novel transgenic mouse model. Nature Medicine 11, 43-49 (2004).
85.Jeffery M.C. and Herbert I.H., Understanding and targeting resistance to anti-angiogenic therapies. J. Gastrointest Oncol. 4, 253-263 (2013).
86.Nielsen D.L. and Sengel?v L., Inhibition of placenta growth factor with TB-403: a novel antiangiogenic cancer therapy. Expert Opin. Biol. Ther. 12, 795-804 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50489-
dc.description.abstract皮膚為人體最大的器官,具有高複雜性與高功能性,也具有許多附屬器官,而毛囊為其中一個重要的附屬器官。毛囊是一個高自主性的微小器官,具有毛囊幹細胞與自我生長週期,型態會隨著生長週期的不同而有所變化。因此,毛囊本身的生理調控,以及在受到外界環境刺激後的生理調控與修復機制,以及與環境之間的溝通與響應,都成為再生醫學研究的範疇,使得毛囊成為再生醫學研究重要的實驗研究模型。
休止期時期的毛囊會受到許多引發因子(initiator)的影響而活化,細胞增生而逐漸生長進入生長期狀態,而這些引發因子的相關研究蓬勃發展。本研究目標希冀能探索毛囊感應到外界刺激後活化,而從休止期狀態生長進入生長期。本研究以十二烷基硫酸鈉(Sodium dodecyl sulfate, SDS)作為皮膚刺激物,並在休止期時期時給予刺激,誘發刺激性接觸性皮膚炎。在SDS連續刺激下,休止期狀態的毛囊,其毛囊幹細胞活化而進行細胞增生,毛囊逐漸生長而過早地進入生長期。在SDS連續刺激後,引發許多免疫細胞浸潤到毛囊周圍區域,包括嗜中性白血球和巨噬細胞。之後,我們將巨噬細胞耗竭,而不是嗜中性白血球耗竭,可以明顯地阻擋SDS刺激後休止期毛囊過早進入生長期,此結果可以得知巨噬細胞在SDS刺激而誘發休止期毛囊活化生長而提早進入生長期中扮演重要角色。
本研究也指出血管內皮生長因子(VEGF)在SDS刺激後,表現量會明顯地增加,且與巨噬細胞有關聯性。抑制VEGF信號傳導途徑可以延遲SDS刺激所誘發休止期毛囊活化生長而提早進入生長期。
總言之,本研究建立一個休止期狀態的毛囊在響應SDS刺激表皮後,活化生長而過早進入生長期的實驗模型,也發現巨噬細胞和VEGF信號傳導途徑可能在其中扮演重要角色。
zh_TW
dc.description.abstractSkin, the largest organ in a human body, exhibits high structural complexity for its unique functions. Hair follicles, one of the skin appendages, are a miniorgan with distinct lifelong cyclic growth that are fueled by their resident stem cells. The activity of hair follicle stem cells are tightly regulated by their niche microenvironment for physiological growth as well as regeneration after injuries. Therefore, hair follicles provide an excellent model for the research of stem cell biology.
The telogen hair follicles, activated by many initiators, undergo cell proliferation and become anagen hair follicles, and the researches of these initiators have become popular and well development recently. This study is aimed at exploring how hair follicles react to irritation to interfollicular epidermis to regenerate from telogen to anagen. We employed the irritant sodium dodecyl sulfate (SDS) to induce irritant contact dermatitis during telogen phase. We found that, after SDS treatment, hair follicle stem cells were activated and hair follicles entered anagen prematurely. This was associated with infiltration of immune cells, including neutrophils and macrophages, in the perifollicular environment. Depletion of macrophages, but not neutrophils, prohibited SDS-induced anagen entry, indicating that activated macrophages are essential for hair follicle stem cell activation by SDS treatment.
Molecularly, increased expression of vascular endothelial growth factor (VEGF) was associated with macrophage infiltration. Inhibition of VEGF signaling delayed SDS-induced anagen entry.
In summary, this study shows that hair follicles are able to initiate a protective regenerative reaction in the presence of irritation to interfollicular epidermis. Activation of macrophages and VEGF signaling are involved in activating hair follicle stem cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:42:55Z (GMT). No. of bitstreams: 1
ntu-105-R03548025-1.pdf: 9388768 bytes, checksum: dc8422aeb0cdba665b19c65dcac46b89 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審訂書 I
誌謝 II
摘要 III
Abstract IV
圖目錄 VIII
表目錄 XI
第一章、緒論 1
1.1皮膚結構概要 1
1.2毛囊結構與毛囊生長週期概要 2
1.3毛囊生長的調控 5
1.3.1 簡要 5
1.3.2 脂肪細胞(adipocyte) 6
1.3.3 免疫細胞(immune cells) 6
1.3.4 荷爾蒙(hormone) 7
1.4探討誘導毛囊生長 8
1.4.1 拔毛(Plucking) 8
1.4.2 佛波醇-12-十四烷醯-13-乙酸酯 9
1.4.3 傷口(wounds) 10
1.4.4 免疫細胞(immune cells) 11
1.4.5 皮膚刺激物(skin irritants) 12
1.5刺激性接觸性皮膚炎 12
1.6研究動機 14
1.7研究目標 15
第二章、實驗材料與方法 16
2.1建立刺激性接觸性皮膚炎動物實驗模型 16
2.1.1 實驗動物 16
2.1.2 皮膚刺激物一:十二烷基硫酸鈉(sodium dodecyl sulfate, SDS) 16
2.1.3 皮膚刺激物二:巴豆油(croton oil) 17
2.2小鼠背部皮膚組織收集與處理 17
2.3蘇木精─伊紅染色(hematoxylin & eosin staining, H&E staining) 18
2.4免疫螢光染色(immunofluorescence staining) 19
2.4.1 單一抗體免疫螢光染色 19
2.4.2 雙重抗體免疫螢光染色 22
2.5 RNA萃取(RNA isolation) 23
2.6 cDNA合成(complementary DNA synthesis) 24
2.7聚合酶連鎖反應(Polymerase chain reaction, PCR) 25
2.8即時定量聚合酶連鎖反應(real-time quantitative polymerase chain reaction, qPCR) 26
2.9免疫細胞耗竭與細胞激素抑制(Immune cells depletion and factors inhibition) 30
2.10免疫相關轉殖基因小鼠實驗(Immune-related transgenic mice) 32
2.10.1轉殖基因小鼠資訊 32
2.10.2小鼠基因型鑑定(Genotyping) 34
2.11細胞分選(Cell Sorting) 35
2.11.1樣本處理 35
2.12 統計與分析方法(Statistical analysis) 36
2.12.1毛髮生長面積 36
2.12.2表皮厚度與毛囊長度 36
2.12.3巨噬細胞數量統計 36
第三章、實驗結果 38
3.1建立皮膚刺激誘發毛囊再生的B6小鼠實驗模型 38
3.2觀察皮膚刺激誘發毛囊再生的皮膚組織結構變化 45
3.2.1 表皮形態變化 45
3.2.2 毛囊形態變化 46
3.3探討皮膚刺激對於毛囊之影響 49
3.3.1 毛囊幹細胞細胞增生 49
3.3.2 次級毛胚細胞細胞增生 50
3.3.3 誘發休止期毛囊提早進入生長期毛囊 50
3.4探討皮膚刺激誘發的發炎反應與免疫浸潤現象 56
3.4.1 皮膚發炎與免疫浸潤現象 56
3.4.2 白細胞介素1族( Interleukin-1 family, IL-1 family) 56
3.4.3 腫瘤壞死因子-α(Tumor necrosis factor-alpha, TNF-α) 57
3.4.4 嗜中性白血球(Neutrophil) 58
3.4.5 巨噬細胞(Macrophages) 58
3.4.6 血管內皮生長因子(Vascular endothelial growth factor, VEGF) 59
3.4.7 信號轉導及轉錄激活蛋白3(Signal transducer and activator of transcription 3, Stat3) 60
3.5使用抑制劑(inhibitors)或是基因剔除小鼠(knockout mice)探討皮膚刺激誘發的免疫細胞與發炎相關因子在皮膚刺激誘導毛囊再生中的影響 70
3.5.1 IL-1R1基因剔除小鼠(IL-1R1 knockout mice) 70
3.5.2 嗜中性白血球耗竭(Neutrophils depletion) 71
3.5.3 巨噬細胞耗竭(Macrophages depletion) 72
3.5.4 血管生長因子受體抑制劑 74
3.5.5 誘導性角質細胞特定Stat3基因剔除小鼠(Inducible keratinocyte-specific Stat3-disrupted mice ) 75
3.6探討巨噬細胞在皮膚刺激物誘導毛囊再生中的機轉 84
3.6.1 巨噬細胞浸潤 84
3.6.2 巨噬細胞類型 85
3.6.3 巨噬細胞與血管新生 86
第四章、討論 94
第五章、結論 100
第六章、參考文獻 102
dc.language.isozh-TW
dc.subject毛囊幹細胞zh_TW
dc.subject毛囊zh_TW
dc.subject十二烷基硫酸鈉zh_TW
dc.subject刺激性接觸性皮膚炎zh_TW
dc.subject巨噬細胞zh_TW
dc.subjectVEGF信號傳導途徑zh_TW
dc.subject毛囊zh_TW
dc.subject毛囊幹細胞zh_TW
dc.subject十二烷基硫酸鈉zh_TW
dc.subject刺激性接觸性皮膚炎zh_TW
dc.subject巨噬細胞zh_TW
dc.subjectVEGF信號傳導途徑zh_TW
dc.subjectVEGF signalingen
dc.subjectHair follicleen
dc.subjectVEGF signalingen
dc.subjectMacrophageen
dc.subjectIrritant contact dermatitisen
dc.subjectSodium dodecyl sulfateen
dc.subjectHair follicle stem cellsen
dc.subjectHair follicle stem cellsen
dc.subjectHair follicleen
dc.subjectSodium dodecyl sulfateen
dc.subjectIrritant contact dermatitisen
dc.subjectMacrophageen
dc.title探討皮膚刺激物誘導毛囊再生的機轉zh_TW
dc.titleThe mechanism of hair follicle regeneration induced by skin irritationen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文彬(Wen-Pin Chen),徐嘉琳(Chia-Lin Hsu)
dc.subject.keyword毛囊,毛囊幹細胞,十二烷基硫酸鈉,刺激性接觸性皮膚炎,巨噬細胞,VEGF信號傳導途徑,zh_TW
dc.subject.keywordHair follicle,Hair follicle stem cells,Sodium dodecyl sulfate,Irritant contact dermatitis,Macrophage,VEGF signaling,en
dc.relation.page109
dc.identifier.doi10.6342/NTU201600968
dc.rights.note有償授權
dc.date.accepted2016-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
9.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved