Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50469
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊嘉揚
dc.contributor.authorYi-Ting Changen
dc.contributor.author張宜婷zh_TW
dc.date.accessioned2021-06-15T12:42:03Z-
dc.date.available2016-08-03
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-26
dc.identifier.citation[1] A. J. Engler, S. Sen, H. L. Sweeney, and D. E. Discher, “Matrix Elasticity Directs Stem Cell Lineage Specification,” Cell, vol. 126, no. 4, pp. 677–689, 2006.
[2] J. T. Parsons and A. R. Horwitz, “Cell adhesion: integrating cytoskeletal dynamics and cellular tension.,” Nat. Rev. Mol. Cell Biol., vol. 11, no. 9, pp. 633–643, 2010.
[3] V. Vogel and M. Sheetz, “Local force and geometry sensing regulate cell functions.,” Nat. Rev. Mol. Cell Biol., vol. 7, no. 4, pp. 265–275, 2006.
[4] S. J. Han, K. S. Bielawski, L. H. Ting, M. L. Rodriguez, and N. J. Sniadecki, “Decoupling substrate stiffness, spread area, and micropost density: A close spatial relationship between traction forces and focal adhesions,” Biophys. J., vol. 103, no. 4, pp. 640–648, 2012.
[5] A. K. Yip, K. Iwasaki, C. Ursekar, H. Machiyama, M. Saxena, H. Chen, I. Harada, K.-H. Chiam, and Y. Sawada, “Cellular response to substrate rigidity is governed by either stress or strain.,” Biophys. J., vol. 104, no. 1, pp. 19–29, Jan. 2013.
[6] C. Franck, S. Maskarinec, D. Tirrell, and G. Ravichandran, “Three-dimensional traction force microscopy: A new tool for quantifying cell-matrix interactions,” PLoS One, vol. 6, no. 3, 2011.
[7] J. Stricker, B. Sabass, U. S. Schwarz, and M. L. Gardel, “Optimization of traction force microscopy for micron-sized focal adhesions.,” J. Phys. Condens. Matter, vol. 22, no. 19, p. 194104, 2010.
[8] C. A. Reinhart-King, M. Dembo, and D. A. Hammer, “Endothelial cell traction forces on RGD-derivatized polyacrylamide substrata,” Langmuir, vol. 19, no. 5, pp. 1573–1579, 2003.
[9] M. Dembo and Y. L. Wang, “Stresses at the cell-to-substrate interface during locomotion of fibroblasts.,” Biophys. J., vol. 76, no. 4, pp. 2307–2316, 1999.
[10] A. Manuscript, “migration,” vol. 10, no. 11, pp. 778–790, 2010.
[11] S. Even-Ram and K. M. Yamada, “Cell migration in 3D matrix,” Curr. Opin. Cell Biol., vol. 17, no. 5 SPEC. ISS., pp. 524–532, 2005.
[12] C. A. Reinhart-King, M. Dembo, and D. A. Hammer, “The dynamics and mechanics of endothelial cell spreading.,” Biophys. J., vol. 89, no. 1, pp. 676–689, 2005.
[13] P. W. Oakes, S. Banerjee, M. C. Marchetti, and M. L. Gardel, “Geometry Regulates Traction Stresses in Adherent Cells,” Biophys. J., vol. 107, no. 4, pp. 825–833, Aug. 2014.
[14] D. E. Discher, P. Janmey, and Y.-L. Wang, “Tissue cells feel and respond to the stiffness of their substrate.,” Science, vol. 310, no. 5751, pp. 1139–1143, 2005.
[15] B. Geiger, J. P. Spatz, and A. D. Bershadsky, “Environmental sensing through focal adhesions.,” Nat. Rev. Mol. Cell Biol., vol. 10, no. 1, pp. 21–33, 2009.
[16] R. J. Pelham and Y. L. Wang, “Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate,” Biol. Bull., vol. 194, no. 3, pp. 348–350, 1998.
[17] C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber, “Geometric control of cell life and death.,” Science, vol. 276, no. 5317, pp. 1425–1428, 1997.
[18] J. Fu, Y.-K. Wang, M. T. Yang, R. A. Desai, X. Yu, Z. Liu, and C. S. Chen, “Mechanical regulation of cell function with geometrically modulated elastomeric substrates.,” Nat. Methods, vol. 7, no. 9, pp. 733–736, 2010.
[19] M. Dembo, T. Oliver, A. Ishihara, and K. Jacobson, “Imaging the traction stresses exerted by locomoting cells with the elastic substratum method.,” Biophys. J., vol. 70, no. 4, pp. 2008–2022, 1996.
[20] J. P. Butler, I. M. Tolić-N?rrelykke, B. Fabry, and J. J. Fredberg, “Traction fields, moments, and strain energy that cells exert on their surroundings.,” Am. J. Physiol. Cell Physiol., vol. 282, no. 3, pp. C595–605, Mar. 2002.
[21] S. V Plotnikov, B. Sabass, U. S. Schwarz, and C. M. Waterman, High-resolution traction force microscopy., 1st ed., vol. 123. Elsevier Inc., 2014.
[22] U. S. Schwarz, N. Q. Balaban, D. Riveline, A. Bershadsky, B. Geiger, and S. A. Safran, “Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization.,” Biophys. J., vol. 83, no. 3, pp. 1380–1394, 2002.
[23] B. Sabass, M. L. Gardel, C. M. Waterman, and U. S. Schwarz, “High resolution traction force microscopy based on experimental and computational advances.,” Biophys. J., vol. 94, no. 1, pp. 207–20, Jan. 2008.
[24] K. L. Johnson, “Contact Mechanics,” Journal of the American Chemical Society, vol. 37. pp. 1–17, 1985.
[25] S. S. Hur, Y. Zhao, Y.-S. Li, E. Botvinick, and S. Chien, “Live Cells Exert 3-Dimensional Traction Forces on Their Substrata.,” Cell. Mol. Bioeng., vol. 2, no. 3, pp. 425–436, Oct. 2009.
[26] J. Toyjanova, E. Bar-Kochba, C. López-Fagundo, J. Reichner, D. Hoffman-Kim, and C. Franck, “High resolution, large deformation 3D traction force microscopy.,” PLoS One, vol. 9, no. 4, p. e90976, Jan. 2014.
[27] Z. Yang, J. S. Lin, J. Chen, and J. H. C. Wang, “Determining substrate displacement and cell traction fields-a new approach,” J. Theor. Biol., vol. 242, no. 3, pp. 607–616, 2006.
[28] R. Zielinski, C. Mihai, D. Kniss, and S. N. Ghadiali, “Finite element analysis of traction force microscopy: influence of cell mechanics, adhesion, and morphology.,” J. Biomech. Eng., vol. 135, no. 7, p. 71009, 2013.
[29] N. Bonakdar, J. P. Butler, B. Fabry, T. M. Koch, and S. Mu, “3D Traction Forces in Cancer Cell Invasion,” PLOS o, vol. 7, no. 3, 2012.
[30] X. Tang, A. Tofangchi, S. V. Anand, and T. A. Saif, “A Novel Cell Traction Force Microscopy to Study Multi-Cellular System,” PLoS Comput. Biol., vol. 10, no. 6, 2014.
[31] P. W. A. K. Harris, “Silicone rubber substrata, a new wrinkle in the study of cell locomotion,” Science (80-. )., 1980.
[32] K. Burton and D. L. Taylor, “Traction forces of cytokinesis measured with optically modified elastic substrata.,” Nature, vol. 385, no. 6615. pp. 450–454, 1997.
[33] A. K. Harris, D. Stopak, and P. Wild, “Fibroblast traction as a mechanism for collagen morphogenesis.,” Nature, vol. 290, no. 5803. pp. 249–251, 1981.
[34] J. Lee, M. Leonard, T. Oliver, A. Ishihara, and K. Jacobson, “Traction forces generated by locomoting keratocytes,” J. Cell Biol., vol. 127, no. 6 II, pp. 1957–1964, 1994.
[35] T. Oliver, M. Dembo, and K. Jacobson, “Traction forces in locomoting cells,” Cell Motil. Cytoskeleton, vol. 31, no. 3, pp. 225–240, 1995.
[36] C. G. Galbraith and M. P. Sheetz, “A micromachined device provides a new bend on fibroblast traction forces.,” Proc. Natl. Acad. Sci. U. S. A., vol. 94, no. 17, pp. 9114–9118, 1997.
[37] N. Q. Balaban, U. S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, L. Addadi, and B. Geiger, “Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates.,” Nat. Cell Biol., vol. 3, no. 5, pp. 466–472, 2001.
[38] U. S. Schwarz, N. Q. Balaban, D. Riveline, L. Addadi, A. Bershadsky, S. A. Safran, and B. Geiger, “Measurement of cellular forces at focal adhesions using elastic micro-patterned substrates,” Mater. Sci. Eng. C, vol. 23, no. 3, pp. 387–394, 2003.
[39] B. a Harley, T. M. Freyman, M. Q. Wong, and L. J. Gibson, “A new technique for calculating individual dermal fibroblast contractile forces generated within collagen-GAG scaffolds.,” Biophys. J., vol. 93, no. 8, pp. 2911–2922, 2007.
[40] J. Huang, L. Qin, X. Peng, T. Zhu, C. Xiong, Y. Zhang, and J. Fang, “Cellular traction force recovery: An optimal filtering approach in two-dimensional Fourier space,” J. Theor. Biol., vol. 259, no. 4, pp. 811–819, 2009.
[41] H. Colin-York, D. Shrestha, J. Felce, D. Waithe, E. Moeendarbary, S. Davis, C. Eggeling, and M. Fritzsche, “Super-resolved traction force microscopy (STFM),” Nano Lett., p. acs.nanolett.6b00273, 2016.
[42] L. Ll and C. Franck, “Three-dimensional traction forces of Schwann cells on compliant substrates .,” J R Soc Interface., vol. 11, no. 97, p. 20140247, 2014.
[43] E. M. L. Landau, L. D., Theory of Elasticity, Third Edit. Oxford, UK: Pergamon, 1986.
[44] J. Honerkamp and J. Weese, “Tikhonovs regularization method for ill-posed problems,” Contin. Mech. Thermodyn., vol. 2, no. 1, pp. 17–30, 1990.
[45] S. S. Ng, C. Li, and V. Chan, “Experimental and numerical determination of cellular traction force on polymeric hydrogels,” Interface Focus, vol. 1, no. 5, pp. 777–791, 2011.
[46] J. Huang, X. Peng, L. Qin, T. Zhu, C. Xiong, Y. Zhang, and J. Fang, “Determination of cellular tractions on elastic substrate based on an integral Boussinesq solution.,” J. Biomech. Eng., vol. 131, no. 6, p. 061009, 2009.
[47] M. H. Zaman, R. D. Kamm, P. Matsudaira, and D. A. Lauffenburger, “Computational model for cell migration in three-dimensional matrices.,” Biophys. J., vol. 89, no. 2, pp. 1389–1397, 2005.
[48] R. J. Bloom, J. P. George, A. Celedon, S. X. Sun, and D. Wirtz, “Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking.,” Biophys. J., vol. 95, no. 8, pp. 4077–4088, 2008.
[49] S. A. Maskarinec, C. Franck, D. A. Tirrell, and G. Ravichandran, “Quantifying cellular traction forces in three dimensions.,” Proc. Natl. Acad. Sci. U. S. A., vol. 106, no. 52, pp. 22108–22113, 2009.
[50] J. C. Del Álamo, R. Meili, B. Álvarez-González, B. Alonso-Latorre, E. Bastounis, R. Firtel, and J. C. Lasheras, “Three-Dimensional Quantification of Cellular Traction Forces and Mechanosensing of Thin Substrata by Fourier Traction Force Microscopy,” PLoS One, vol. 8, no. 9, 2013.
[51] W. R. Legant, J. S. Miller, B. L. Blakely, D. M. Cohen, G. M. Genin, and C. S. Chen, “Measurement of mechanical tractions exerted by cells in three-dimensional matrices.,” Nat. Methods, vol. 7, no. 12, pp. 969–71, Dec. 2010.
[52] Y. Lee, J. Huang, Y. Wang, and K. Lin, “Three-dimensional fibroblast morphology on compliant substrates of controlled negative curvature.,” Integr. Biol. (Camb)., vol. 5, no. 12, pp. 1447–55, 2013.
[53] J. L. Tan, J. Tien, D. M. Pirone, D. S. Gray, K. Bhadriraju, and C. S. Chen, “Cells lying on a bed of microneedles: an approach to isolate mechanical force.,” Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 4, pp. 1484–1489, 2003.
[54] V. Peschetola, V. M. Laurent, A. Duperray, R. Michel, D. Ambrosi, L. Preziosi, and C. Verdier, “Time-dependent traction force microscopy for cancer cells as a measure of invasiveness,” Cytoskeleton, vol. 70, no. 4, pp. 201–214, 2013.
[55] H. Delanoë-Ayari, J. P. Rieu, and M. Sano, “4D traction force microscopy reveals asymmetric cortical forces in migrating dictyostelium cells,” Phys. Rev. Lett., vol. 105, no. 24, pp. 2–5, 2010.
[56] Randall J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. University of Washington, Seattle, Washington, 2007.
[57] Y.-F. Chou, “Chapter 2. Strain Energy and Complementary Energy,” Energy Principle. 2013.
[58] S. Timoshenko, “Theory of Elasticity.” McGraw-Hill Inc, New York, 1934.
[59] A. Teodor M. and G. Ardeshir, “Theory of Elasticity for Scientists and Engineers.” 2000.
[60] I. Fridtjov, Continuum Mechanics. Springer, 2008.
[61] J. T. D. F. P. Beer, E. R. Johnston and B. J. Goodno, Mechanics of Materials, Third. New York: McGraw-Hill Inc, 2004.
[62] J. N. Reddy, An Inroduction to the Finite Element Method, Third Edit. McGraw-Hill Inc, 2006.
[63] S. Moaveni, Finite Element Analysis-Theory and Application with ANSYS, Third Edit. Pearson Education Taiwan Ltd., 2013.
[64] K. L. Lawrence, “ANSYS Tutorial - Release 11.0: Structural & Thermal Analysis Using the ANSYS Release 11.0 Environment.” 2012.
[65] H.Yang, “Three-Dimensional Cellular Traction Force Measurement on a Flat and Compliant Substrate,” Academia Sinica, 2014.
[66] “Rheometer Physica MCR 301, Anton Paar.” [Online]. Available: http://www.anton-paar.com/corp-en/products/details/mcr-rheometer-series/rheometer/.
[67] Instruction manual MCR Series. Austria, Europe: Anton Paar, 2014.
[68] R. W. Style, C. Hyland, R. Boltyanskiy, J. S. Wettlaufer, and E. R. Dufresne, “Surface tension and contact with soft elastic solids.,” Nat. Commun., vol. 4, p. 2728, 2013.
[69] Y. Li, Z. Hu, and C. Li, “New method for measuring poisson’s ratio in polymer gels,” J. Appl. Polym. Sci., vol. 50, no. 6, pp. 1107–1111, 1993.
[70] T. Boudou, J. Ohayon, C. Picart, and P. Tracqui, “An extended relationship for the characterization of Young’s modulus and Poisson's ratio of tunable polyacrylamide gels.,” Biorheology, vol. 43, no. 6, pp. 721–728, 2006.
[71] J. Y. Wu, “Prepare PA gel with N-acryloyl-6-aminocaproic acid for passivation,” 2014.
[72] H. H. Lee, “Three-Dimensional Cellular Traction Force Microscopy,” National Taiwan University, 2015.
[73] “Automated Inverted Microscope, Leica DMI4000.” [Online]. Available: http://www.leica-microsystems.com/products/light-microscopes/clinical/inverted-microscopes/details/product/leica-dmi4000-b/.
[74] E. Bar-Kochba, J. Toyjanova, E. Andrews, K.-S. Kim, and C. Franck, “A Fast Iterative Digital Volume Correlation Algorithm for Large Deformations,” Exp. Mech., vol. C, Aug. 2014.
[75] E. M. Terentjev, “Precise determination of the Poisson ratio in soft materials with 2D digital image correlation,” vol. 9, no. 26, 2013.
[76] J. K. Sveen, An introduction to MatPIV v. 1.6.1. 2004.
[77] C. Skupsch and C. Brücker, “Single camera , multiple-plane PIV by synthetic refocusing,” no. 1995, pp. 9–12, 2012.
[78] W. J. Palm, Introduction to MATLAB for Engineers, Third Edit. McGraw-Hill Education, 2010.
[79] J. Soiné, “Reconstruction and Simulation of Cellular Traction Forces,” Ruperto-Carola University of Heidelberg, Germany, 2014.
[80] W. R. Legant, C. K. Choi, J. S. Miller, L. Shao, L. Gao, E. Betzig, and C. S. Chen, “Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions.,” in Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 3, 2013, pp. 881–6.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50469-
dc.description.abstract在細胞生物學領域中,細胞對外界牽引力在生理學上的眾多反應有顯著的影響,當細胞在移動或分化時,都會透過複雜的機制對外界產生連結並施加牽引力於外界,因此精確地量化細胞牽引力方向和大小能提供與生物學相關的有效資訊。而現今有許多量測分析細胞牽引力方法,從一開始將細胞培養在聚丙烯胺水膠(polyacrylamide gel,簡稱PA gel)上,觀察水膠輪廓變形來計算得到牽引力,到現今利用微陣列柱去計算細胞對微陣列柱造成的形變,或追蹤埋在水膠內螢光粒子的位移,利用三維包辛尼斯可-賽魯蒂方程式所化簡的格林函數作為基礎,以傅立葉轉換法做運算得其牽引力,然而和傅立葉轉換法相比,利用有限元素法推算牽引力,能夠更為有效的推廣至複雜的幾何形狀與材料性質,而不受包辛尼斯可-賽魯蒂方程式的假設限制。
本研究主要著重在計算方法,建立各種分析方法以及探討不同方法之差異,進而提供實驗設計的參考。實驗中是利用追蹤在水膠內受細胞牽引力而移動的螢光粒子位移,再利用有限元素模擬軟體計算細胞牽引力,為了驗證此系統的可靠度以及不同分析方法的影響,本研究建立一套細胞牽引力回復模擬,藉此來判斷系統回復的準確性,論文前段主要模擬螢光粒子的分布對分析造成的影響,歸納出螢光粒子集中於表面時能達到較為精確的分析結果,並且深入探討其背後原因,後段部分則利用模擬不同的資料點濃度,歸納出資料點分布在表面時能夠被回復的範圍,發現在資料點濃度較低時,會傾向於低估牽引力的大小值,並且回復的牽引力位置也更加不精確。最後,建立新的混合邊界條件系統,細胞牽引力為接觸力,只會發生在細胞接觸到PA膠的位置,藉由這項已知可將細胞內外分開施加不同的邊界條件,在細胞內施加實驗上量測的螢光小球位移,在細胞外則外力為零,用以更符合真實情況,並且和原有的分析方法做比較。
zh_TW
dc.description.abstractMany physiological processes can be affected by cellular traction force between cells and surroundings. Quantifying the magnitude and direction of cellular traction force can provide important information while cell migrating or in cell differentiation. Developments in three-dimensional (3D) traction force microscopy techniques with Finite Element Method, which measure the displacement of beads in whole substrate, make it accessible to measure traction force exerted by cell. However, the method is limited by the beads density and the technique of tracking beads in whole substrate. With special treatments, beads can be concentrated on the top surface of the polyacrylamide (PA) substrates. When the distribution of the beads is thin enough, it can be regarded as surface beads. In addition, it is easier to track the displacement and we can get higher resolution by using higher beads density. In the thesis, we get the displacements from the nodal solutions of simulated traction field, and put the x, y, and z component of displacements into three-dimensional regular grid. Then, we put the complete grid of displacement into finite element model to obtain traction field solution. Compared with the whole boundary condition, plane boundary condition can be readily applied to substrate and calculate better result. Following the same steps described above, we compare the two methods by solving traction field exerted by experimental cell data.
In this thesis, we focus on the computational method, and develop a method to understand the influences of the beads density. We use simulations to find resolvable range for single focal adhesion and couple focal adhesion recovery under different beads density. We find that the lower beads density causes the recovered traction more dispersed and underestimated, and that also probably cause the deviation on the recovered position of tractions. We then construct mixed boundary method to calculated the cell traction force. For this condition, we applied displacement in the cell region and make traction free outside the cell region. For this case, we can obtain more accurate experimental result. In conclusion, we develop several analysis methods and compare their pros and cons, which provide helpful information for experimental conditions and a better understanding of the simulation results.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:42:03Z (GMT). No. of bitstreams: 1
ntu-105-R03522518-1.pdf: 6482155 bytes, checksum: 7a0d28b7c4f7df1d39042fdd8acf4418 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT IV
目錄 VI
表目錄 IX
圖目錄 X
符號表 XII
第一章 緒論 1
1.1 細胞牽引力 1
1.2 細胞牽引力分析 2
1.3 研究動機與目的 4
1.4 本文內容與架構 5
第二章 文獻回顧與相關理論 6
2.1 文獻回顧 6
2.2 虎克定律理論介紹與推導 8
2.2.1 廣義虎克定律之基本假設 8
2.2.2 虎克定律之等向性推導 10
2.3 牽引力學 13
2.3.1 尤拉柯西應力原理 13
2.3.2 柯西應力原理 14
2.3.3 直角座標應力分量 16
2.4 有限元素法之理論與推導 17
第三章 實驗方法與儀器設備 18
3.1 細胞基材水膠的製備 18
3.2 水膠的機械性質量測 22
3.3 細胞培養 27
3.4 共軛焦顯微鏡與影像處理 27
3.5 三維細胞牽引力模擬分析 28
第四章 數值分析與有限元素模型設定 29
4.1 位移邊界條件模擬 30
4.1.1 幾何尺寸與材料參數設定 31
4.1.2 三維全域位移邊界條件設定 32
4.1.3 三維平面位移邊界條件設定 33
4.2 螢光粒子濃度模擬 34
4.2.1 尺寸與材料參數設定 35
4.2.2 有限元素模型驗證 38
4.2.3 三維表面位移條件設定 38
4.3 三維混和位移條件設定 39
第五章 結果與討論 40
5.1 不同位移邊界條件比較 40
5.1.1 三維全域位移邊界結果 41
5.1.2 三維平面位移邊界結果 44
5.1.3 模擬結果之分析 47
5.1.4 模擬結果之討論 50
5.1.5 實驗分析之結果 53
5.2 半無限域之有限元素模型驗證 55
5.3 螢光粒子濃度對模擬之影響 56
5.3.1 單一點狀黏著模擬分析 56
5.3.2 對偶力點狀黏著模擬分析 60
5.4 混合邊界條件細胞分析 64
第六章 結論與未來展望 65
6.1 結論 65
6.2 未來展望 67
參考文獻 68
附錄一 自動偵測錯誤位移系統 77
附錄二 螢光小球位置模擬網格化 79
附錄三 不同的螢光粒子單一分佈狀態 81
附錄四 加入雜訊回復狀況 83
附錄五 著作目錄 85
dc.language.isozh-TW
dc.subject螢光粒子分布zh_TW
dc.subject螢光粒子濃度zh_TW
dc.subject三維zh_TW
dc.subject細胞牽引力zh_TW
dc.subject數值分析模擬zh_TW
dc.subject有限元素法zh_TW
dc.subject牽引力回復zh_TW
dc.subjectTraction force reconstructionen
dc.subjectThree-dimensionalen
dc.subjectCellular traction forceen
dc.subjectFinite element methoden
dc.subjectBeads densityen
dc.subjectTraction force reconstructionen
dc.subjectThree-dimensionalen
dc.subjectCellular traction forceen
dc.subjectFinite element methoden
dc.subjectBeads densityen
dc.title定位螢光粒子分佈對三維細胞牽引力之研究與分析zh_TW
dc.titleEffects of Embedded Beads Distribution on Cellular Traction Force Analysisen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林耿慧,馬劍清,楊雅棠,范士岡
dc.subject.keyword三維,細胞牽引力,數值分析模擬,有限元素法,牽引力回復,螢光粒子分布,螢光粒子濃度,zh_TW
dc.subject.keywordThree-dimensional,Cellular traction force,Finite element method,Beads density,Traction force reconstruction,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201601430
dc.rights.note有償授權
dc.date.accepted2016-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
6.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved