請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50465
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 韋文誠(Wen-Cheng J. Wei) | |
dc.contributor.author | Kun-Hsiang Li | en |
dc.contributor.author | 李坤翔 | zh_TW |
dc.date.accessioned | 2021-06-15T12:41:53Z | - |
dc.date.available | 2020-08-21 | |
dc.date.copyright | 2020-08-21 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-12 | |
dc.identifier.citation | [1] Shafiee S, Topal E. When will fossil fuel reserves be diminished? Energy Policy. 2009;37:181-189. [2] Manzano-Agugliaro F, Alcayde A, Montoya FG, Zapata-Sierra A, Gil C. Scientific production of renewable energies worldwide : An overview. Renew Sust. Energy Rev. 2013;18:134-143. [3] 陳維新,生質物與生質能,高立圖書有限公司,(2012) [4] Hall DO, Rao KK. Photosynthesis, 6th Edition, Studies in Biology, Cambridge University Press. 1999. [5] Schiermeier Q, Tollefson J, Scully T, Witze A, Morton O. Energy alternatives: electricity without carbon. Nature. 2008;454:816-823. [6] Eaves J, Eaves S. Renewable corn-ethanol and energy security. Energy Policy. 2007;35:5958-5963. [7] Mackay DJC. Sustainable energy: without the hot air. Cambridge, UK: UIT; 2009. [8] Junming X, Jianchun J, Jie C, Yunjuan S. Biofuel production from catalytic cracking of woody oils. Bioresour. Technol. 2010;101:5586-5591. [9] Link S, Arvelakis S, Paist A, Martin A, Liliedahl T, Sjöström K. Atmospheric fluidized bed gasification of untreated and leached olive residue, and cogasification of olive residue, reed, pine pellets and Douglas fir woodchips. Appl Energy. 2012;94:89-97. [10] Sims REH. Bioenergy-renewable carbon sink. Renew Energy. 2001;22:31-37. [11] Lu L, Tang Y, Xie J, Yuan Y. The role of marginal agricultural land-based mulberry planting in biomass energy production. Renew Energy. 2009;34:1789-1794. [12] Hall DO, House JI. Biomass energy in Western Europe to 2050. Land Use Policy. 1995;12:37-48. [13] Yemshanov D, McKenney D. Fast-growing poplar plantations as a bioenergy supply source for Canada. Biomass Bioenergy. 2008;32:185-197. [14] Brenes MD. Biomass and bioenergy: new research. New York, USA: Nova Science Publishers; 2006. [15] Khanal SK, Surampalli RY, Zhang TC, Lamsal BP, Tyagi RD, Kao CM. Bioenergy and biofuel from biowastes and biomass. Virginia, USA: ASCE; 2010. [16] 林俊義,生質能源開發與利用,國立台灣大學生化科技系,2006。 [17] Ndimba BK, Ndimba RJ, JohnsonTS, Sirisattha RW, Baba M, Sirisattha S, et al. Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae. J Proteomics. 2013;93:234-244. [18] IEA, International Energy Agency. World energy outlook 2007. Paris: OECD/ IEA; 2007. [19] Halder P, Pietarinen J, Havu-Nuutinen S, Pelkonen P. Young citizens' knowledge and perceptions of bioenergy and future policy implications. Energy Policy. 2010;38:3058-3066. [20] Keam S, McCormick N. Implementing sustainable bioenergy production: a compilation of tools and approaches. Gland, Switzerland: IUCN; 2008. [21] 張源開,碳酸鹽對生質料氣化之影響和合成氣催化重整後應用於固態燃料電池上之研究,國立台灣大學,碩士論文,2014。 [22] 柯欣怡,應用於固態燃料電池的都市廢棄物連續氣化及燃氣重整研究,國立台灣大學,碩士論文,2015。 [23] 陳冠宇,混合都市固態廢棄物氣化及合成氣催化重整反應之應用在固態燃料電池研究,國立台灣大學,碩士論文,2017。 [24] Gokcol C, Dursun B, Alboyacı B, Sunan E. Importance of biomass energy as alternative to other sources in Turkey. Energy Policy. 2009;37:424-431. [25] 朱洪法、劉麗芝,催化劑製備及應用技術,中國石化出版社,(2011) [26] Huang X, Li J, Wang J, Li Z, Xu J. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst. Front. Chem. Sci. Eng. 2020;14:534-545. [27] 韋文誠,固態燃料電池技術,高立圖書有限公司,(2013) [28] Sehested J. Four challenges for nickel steam-reforming catalysts. Catalysis Today. 2006;111:103-110. [29] Wang HT, Li ZH, Tian SX. Effect of promoters on the catalytic performance of Ni/Al2O3 catalyst for partial oxidation of methane to syngas. React. Kinet. Catal. Lett. [30] 洪逸明,酒精重組器催化劑成分開發,元智大學,國科會研究報告,2012。 [31] Lin YC, Wei WC. Study of electric conductivity, temperature sensing, and catalytic effect of Cu-based materials for anode of solid oxide fuel cells. National Taiwan University Master Thesis. 2018. [32] Ye XF, Huang B, Wang SR, Xiong L, Wen TL. Preparation and performance of a Cu–CeO2–ScSZ composite anode for SOFCs running on ethanol fuel. J. Power Sources. 2007;164:203-209. [33] Ye XF, Wang SR, Hu Q, Chen JY, Wen TL, Wen ZY. Improvement of Cu–CeO2 anodes for SOFCs running on ethanol fuels. Solid State Ion. 2009;180:276-281. [34] Cimenti M, Hill JM. Direct utilization of methanol and ethanol in solid oxide fuel cells using Cu–Co(Ru)/Zr0.35Ce0.65O2−δ anodes. J. Power Sources. 2010;195:3996-4001. [35] Sarruf BJM, Hong JE, Steinberger-Wilckens R, Miranda PE. CeO2-Co3O4-CuO anode for direct utilisation of methane or ethanol in solid oxide fuel cells. INT J HYDROGEN ENERG. 2018;43:6340-6351. [36] Ru YL, Sang JK, Xia CG, Wei WC, Guan WB. Durability of direct internal reforming of methanol as fuel for solid oxide fuel cell with double-sided cathodes. INT J HYDROGEN ENERG. 2020;45:7069-7076. [37] https://en.wikipedia.org/wiki/Cost_accounting [38] Carmona S, Ezzamel M, Gutierrez F. Control and Cost Accounting Practices in the Spanish Royal Tobacco Factory. Account. Organ. Soc. 1997;22:411-446. [39] Walker LJ. Cost Accounting for Dentists. The Journal of the National Dental Association. 1917;4:897-902. [40] Erf O. Necessary Records in Milk Cost Accounting. Journal of Dairy Science. 1921;4:489-494. [41] Brogden HE. Taylor EK. The Dollar Criterion - Applying the Cost Accounting Concept to Criterion Construction. Pers Psychol. 1950;3:133–154. [42] Dearden J. Cost Accounting Comes to Service Industries. Harvard Business Review. 1978;56:132-140. [43] Johnson T. Toward a New Understanding of Nineteenth-Century Cost Accounting. The Accounting Review. 1981;56:510-518. [44] Johnson HT, Kaplan RS. Relevance Lost : The Rise and Fall of Management Accounting. Harvard Business School Press; 1987. [45] http://www.fao.org/nr/sustainability/full-cost-accounting/en/ [46] Jasinski D, Meredith J, Kirwan K. A comprehensive review of full cost accounting methods and their applicability to the automotive industry. Journal of Cleaner Production. 2015;108:1123-1139. [47] 楊庭懿,參雜過渡金屬離子之二氧化鈰電解質燒結性能和電性表現研究,國立台灣大學,碩士論文,2019。 [48] 黃祺茵,固態氧化物燃料電池之應用可行性分析-使用甲醇作為燃料,逢甲大學,碩士論文,2019。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50465 | - |
dc.description.abstract | 液態碳氫燃料有著體積能量密度高於氫氣的優勢,是應用在固態氧化物燃料電池上具經濟及能源效益之燃料,如何有效利用液態碳氫燃料,了解此項能源技術發展之成本結構,是發展永續能源的一個挑戰。本研究將甲醇與乙醇氣化,研究經氣化和重整後,測試合成氣中3種小分子燃料(H2, CO和CH4)的含量。研究利用兩種系統的重整用催化劑,分別以活性氧化鋁球與氧化鐵為陶瓷載體,氧化鎳、氧化鈰、氧化釤與氧化鐵等為催化材,利用氣相層析儀進行重整後合成氣之定量分析,探討不同陶瓷催化劑成分對重整氣體成分的影響。為了能應用於中溫SOFC,並長時間運轉,本研究組製一加熱爐進行電與熱的測試,並透過將實驗步驟和原料等分類歸納,探討實驗室級之液態碳氫燃料用於SOFC發電之可行性,並進行成本估算。本研究之催化載體用於重整反應後,在800 oC約可產出34%一氧化碳、58%氫氣以及4%甲烷,在能量轉換效率為50%、700 W SOFC電池堆之成本40000元、總持溫時間20000小時與催化劑壽命為10天之假設下進行估算,本研究並討論廢氣之熱回收、內重整及採用廢棄燃料(PP40)之對於發電成本之影響。 | zh_TW |
dc.description.abstract | Liquid hydrocarbon fuels have the advantage of higher volumetric energy density over hydrogen. The fuels are economic and energy-efficient if used for portable solid oxide fuel cells (SOFCs). This study investigates the gasification and reforming of bio-alcohols and trying to understand the cost structure of the energy technology which is necessary and sustainable for our energy development. Methanol and ethanol were gasified, and the content of three small molecular fuels (H2, CO, and CH4) in the syngas were studied. Two systems of reforming catalysts were used, activated alumina balls and iron oxide as ceramic carrier, nickel oxide, cerium oxide, samarium oxide, and iron oxide as catalytic materials. Using gas chromatography (GC) to quantitatively analyze the reformed syngas was conducted, the effects of different ceramic catalyst components are discussed. In order to operate the IT-SOFC for a long period, we assembled a furnace for conducting electrical and thermal tests. Through classification and collection of assembling steps, raw materials costs, we calculated the costs of using liquid hydrocarbon fuels for the power generation of SOFC. The catalyst used in this study can produce about 34% CO, 58% H2 and 4% CH4 at 800 oC, with several assumptions, including energy conversion efficiency 50%, a cost NT$40,000 of a 700 W SOFC, total operation time 20,000 hr, and the catalyst lifetime lasting for 10 days. Several amendments, heat recovery from waste gas, internal reforming, and using low-cost waste plastic/paper mixture (PP40) are discussed based on the influence on the cost of the power generation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:41:53Z (GMT). No. of bitstreams: 1 U0001-1108202013121300.pdf: 3653793 bytes, checksum: 8162f9df66610888239903fdef43b8d8 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 ix 第一章 緒論 1 1.1 研究目的 2 第二章 文獻回顧 3 2.1 生質能與液態燃料 3 2.2 催化劑與重整 5 2.3 酒精燃料應用於SOFC 8 2.4 燃料電池之成本估算 11 2.4.1 成本會計之起源與演進 11 2.4.2 分步成本制 12 2.4.3 分批成本制 12 2.4.4 作業基礎成本制 12 第三章 實驗步驟 13 3.1 實驗材料 13 3.1.1 液態燃料 13 3.1.2 催化劑與載體 13 3.2 催化劑/載體的製備 13 3.3 氣化爐及重整器組裝 14 3.4 液態燃料之氣化與重整 15 3.4.1 液態燃料的氣化 15 3.4.2 合成氣的催化重整 15 3.5 實驗分析 16 3.5.1 氣相層析儀 16 3.5.2 氣化測試 16 3.5.3 密度量測 16 3.5.4 還原性分析 17 3.5.5 XRD晶相分析 17 3.5.6 BET比表面積分析 17 3.5.7 微結構與成分分析 17 3.5.8 重整測試 18 3.5.9 氣化爐測試 18 3.5.10 電池測試 18 3.5.11 成本分析 18 第四章 結果與討論 27 4.1 液態燃料的氣化熱分解 27 4.2 催化材分析 34 4.2.1 TGA測試 34 4.2.2 載體燒結 39 4.2.3 催化成分分析 48 4.2.4 催化重整氣體分析 57 4.3 高溫爐測試 63 4.4 成本分析 76 4.4.1 固定式氣化爐成本 76 4.4.2 重整器成本估算 78 4.4.3 催化劑成本 79 4.4.4 單電池成本 81 4.4.5 利用甲醇之燃料電池發電成本估算 83 4.4.6 改善措施 85 第五章 結論 90 參考文獻 91 | |
dc.language.iso | zh-TW | |
dc.title | 液態酒精燃料應用於中溫SOFC之研究 | zh_TW |
dc.title | Liquid Alcohol Fuels Supplying for IT-SOFC | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃馨儀(Hsin-Yi Huang),洪逸明(I-Ming Hung),劉世賢(Shih-Hsien Liu) | |
dc.subject.keyword | 液態燃料,酒精,催化,重整,合成氣,加熱爐,成本分析, | zh_TW |
dc.subject.keyword | liquid fuel,alcohol,catalyst,reforming,syngas,furnace,cost analysis, | en |
dc.relation.page | 94 | |
dc.identifier.doi | 10.6342/NTU202002925 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1108202013121300.pdf 目前未授權公開取用 | 3.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。