請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50463
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 高振宏(C. Robert Kao) | |
dc.contributor.author | Li-Jen Yu | en |
dc.contributor.author | 于立真 | zh_TW |
dc.date.accessioned | 2021-06-15T12:41:48Z | - |
dc.date.available | 2018-10-14 | |
dc.date.copyright | 2016-10-14 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-26 | |
dc.identifier.citation | [1] K. N. Tu, “Reliability challenges in 3D IC packaging technology,” Microelectronics Reliability 51, 517-523 (2011).
[2] H. Y. Chuang, W. M. Chen, W. L. Shih, Y. S. Lai, and C. R. Kao, “Critical New Issues Relating to Interfacial Reactions Arising from Low Solder Volume in 3D IC Packaging,” Proceedings of 2011 Electronic Components and Technology Conference, 1723-1728 (2011). [3] H. Y. Chuang, T. L. Yang, M. S. Kuo, Y. J. Chen, J. J. Yu, C. C. Li, and C. R. Kao, “Critical Concerns in Soldering Reactions Arising from Space Confinement in 3-D IC Packages,” IEEE Transactions on Device and Materials Reliability 12, 233-240 (2012). [4] Y. M. Lin, C. J. Zhan, J. Y. Juang, J. H. Lau, T. H. Chen, R. Lo, M. Kao, T. Tian, and K. N. Tu, “Electromigration in Ni/Sn Intermetallic Micro Bump Joint for 3D IC Chip Stacking,” Proceedings of 2011 Electronic Components and Technology Conference, 351-357 (2011). [5] M. S. Kuo, “Interfacial reaction between Ni substrate and lead-free solder for 3D IC application,” Master Thesis, National Taiwan University (2012). [6] T. Laurila, V. Vuorinen, and J. K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials,” Materials Science and Engineering: R: Reports 49, 1-60 (2005). [7] K. Zeng, and K. N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology,” Materials Science and Engineering: R: Reports 38, 55-105 (2002). [8] W. C. Oliver, and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research 7, 1564-1583 (1992). [9] W. C. Oliver, and G. M. Pharr, “Mesurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” Journal of Materials Research 19, 3-20 (2004). [10] M. D. Uchic, D. M. Dimiduk, J. N. Florando, and W. D. Nix, “Sample dimensions influence strength and crystal plasticity,” Science 305, 986-989 (2004). [11] M. D. Uchic, and D. M. Dimiduk, “A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing,” Materials Science and Engineering: A 400-401, 268-278 (2005). [12] Thaddeus B. Massalski, Hiroaki Okamoto, P. R. Subramanian, Linda Kacprzak, Binary alloy phase diagrams, Materials Park, Ohio: ASM International, (1990). [13] N. L. Okamoto, D. Kashioka, M. Inomoto, H. Inui, H. Takebayashi, and S. Yamaguchi, “Compression deformability of Γ and ζ Fe–Zn intermetallics to mitigate detachment of brittle intermetallic coating of galvannealed steels,” Scripta Materialia 69, 307-310 (2013). [14] N. L. Okamoto, M. Inomoto, H. Adachi, H. Takebayashi, and H. Inui, “Micropillar compression deformation of single crystals of the intermetallic compound ζ-FeZn13,” Acta Materialia 65, 229-239 (2014). [15] L. Jiang, and N. Chawla, “Mechanical properties of Cu6Sn5 intermetallic by micropillar compression testing,” Scripta Materialia 63, 480-483 (2010). [16] L. Jiang, H. Jiang, and N. Chawla, “The Effect of Crystallographic Orientation on the Mechanical Behavior of Cu6Sn5 by Micropillar Compression Testing,” Journal of Electronic Materials 41, 2083-2088 (2012). [17] P.-F. Yang, Y.-S. Lai, S.-R. Jian, J. Chen, and R.-S. Chen, “Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples,” Materials Science and Engineering: A 485, 305-310 (2008). [18] Z. Chen, M. He, B. Balakrisnan, and C. C. Chum, “Elasticity modulus, hardness and fracture toughness of Ni3Sn4 intermetallic thin films,” Materials Science and Engineering: A 423, 107-110 (2006). [19] G.-Y. Jang, J.-W. Lee, and J.-G. Duh, “The Nanoindentation Characteristics of Cu6Sn5, Cu3Sn, and Ni3Sn4 Intermetallic Compounds in the Solder Bump,” Journal of Electronic Materials 33, 1103-1110 (2004). [20] K. Mohankumar, and A. A. O. Tay, “Nanoindentation study of the Pb-free solders in fine pitch interconncets,” 2004 Electronics Packaging Technology Conference, 483-489 (2004). [21] H. J. Albrecht, A. Juritza, K. Müller, J. Sterthaus, J. Villian, and A. Vogliano, “Interface reactions in microelectronic solder joints and associated intermetallic compounds: An investigation of their mechanical properties using nanoindentation,” 2003 Electronics Packaging Technology Conference, 726-731 (2003). [22] I. N. Sneddon, “The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile,” International Journal of Engineering Science 3, 47-57 (1965). [23] C. P. Frick, B. G. Clark, S. Orso, A. S. Schneider, and E. Arzt, “Size effect on strength and strain hardening of small-scale [111] nickel compression pillars,” Materials Science and Engineering: A 489, 319-329 (2008). [24] H. Zhang, B. E. Schuster, Q. Wei, and K. T. Ramesh, “The design of accurate micro-compression experiments,” Scripta Materialia 54, 181-186 (2006). [25] G. Simmons, H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, MA, 1971. [26] R. J. Fields, S. R. Low III, G. K. Lucey Jr., Physical and mechanical properties of intermetallic compounds commonly found in solder joints, in: M. J. Cieslak, J. H. Perepezko, S. Kang, M. E. Glicksman (Eds.), The Metal Science of Joining, TMS, Warrendale, PA, 1992, pp. 165-173. [27] W. Jeitschko, and B. Jaberg, “Structure Refinement of Ni3Sn4,” Acta Crystallographica section B B38, 598-600 (1982). [28] J. A. van Beek, S. A. Stolk, and F. J. J. van Loo, “Multiphase Diffusion in the Systems Fe-Sn and Ni-Sn,” Zeitschrift fuer Metallkunde 73, 439-444 (1982). [29] F. F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi, “Dislocation Avalanches, Strain Bursts, and the Problem of Plastic Forming at the Micrometer Scale,” Science 318, 251-254 (2007). [30] R. S. Hay, “Monazite (monoclinic LaPO4) slip systems at room temperature,” Philosophical Magazine 88, 4243-4270 (2008). [31] R. Peierls, “The size of a dislocation,” Proceedings of the Physical Society 52, 34-37 (1940). [32] F. R. N. Nabarro, “Dislocations in a simple cubic lattice,” Proceedings of the Physical Society 59, 256-272 (1947). [33] G. Ghosh, “Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging,” Journal of Materials Research 19, 1439-1454 (2011). [34] F. Gao, and J. Qu, “Elastic Moduli of (Ni, Cu)3Sn4 Ternary Alloys from First-Principles Calculations,” Journal of Electronic Materials 39, 2429-2434 (2010). [35] N. T. S. Lee, V. B. C. Tan, and K. M. Lim, “Structural and mechanical properties of Sn-based intermetallics from ab initio calculations,” Applied Physics Letters 89, 141908 (2006). [36] L. Han, L. Wang, J. Song, M. C. Boyce, and C. Ortiz, “Direct quantification of the mechanical anisotropy and fracture of an individual exoskeleton layer via uniaxial compression of micropillars,” Nano Lett 11, 3868-3874 (2011). [37] C. J. Lee, J. C. Huang, and T. G. Nieh, “Sample size effect and microcompression of Mg65Cu25Gd10 metallic glass,” Applied Physics Letters 91, 161913 (2007). [38] M. C. Liu, J. C. Huang, K. W. Chen, J. F. Lin, W. D. Li, Y. F. Gao, and T. G. Nieh, “Is the compression of tapered micro- and nanopillar samples a legitimate technique for the identification of deformation mode change in metallic glasses?,” Scripta Materialia 66, 817-820 (2012). [39] M. Pozuelo, Y. W. Chang, and J. M. Yang, “In-situ microcompression study of nanostructured Mg alloy micropillars,” Materials Letters 108, 320-323 (2013). [40] Y. W. Chang, M. Pozuelo, and J. M. Yang, “Size-Induced Strengthening in Nanostructured Mg Alloy Micropillars,” Materials Research Letters 2, 199-203 (2014). [41] J. R. Greer, W. C. Oliver, and W. D. Nix, “Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients,” Acta Materialia 53, 1821-1830 (2005). [42] C. A. Volkert, and E. T. Lilleodden, “Size effects in the deformation of sub-micron Au columns,” Philosophical Magazine 86, 5567-5579 (2006). [43] J. San Juan, M. L. No, and C. A. Schuh, “Nanoscale shape-memory alloys for ultrahigh mechanical damping,” Nature Nanotechnology 4, 415-419 (2009). [44] W. Li, H. Bei, J. Qu, and Y. Gao, “Effects of machine stiffness on the loading-displacement curve during spherical nano-indentation,” Journal of Materials Research 28, 1903-1911 (2013). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50463 | - |
dc.description.abstract | 本實驗使用微米柱壓縮測試與奈米壓痕試驗兩種方法探討不同晶粒取向Ni3Sn4介金屬之機械行為。在封裝逐漸走向晶片垂直堆疊以及銲點尺度急劇縮小的趨勢下,研究Ni3Sn4之機械行為便顯得更加重要與迫切。本實驗發現,在經過高溫長時間時效後,Ni3Sn4退火雙晶大量生成,本研究亦鑑定出Ni3Sn4退火雙晶之雙晶要素。由實驗之應力應變曲線可知,Ni3Sn4表現出脆性之機械行為,且經過壓縮測試後,Ni3Sn4微米柱沿著某些平面破裂。然而,不同於以往對介金屬化合物相當脆的認知,在某些特定的晶粒取向中,Ni3Sn4微米柱在完整的壓縮測試後並未發生破壞,反而展現塑性形變的行為,並且擁有良好的應變量。透過穿透式電子顯微鏡的分析發現,Burgers vector [0 1 0]之差排的滑移為Ni3Sn4產生塑性形變的主要機制,同時,Ni3Sn4之滑移系統亦可由穿透式電子顯微鏡分析鑑定,其滑移系統為(1 0 0)[0 1 0]。另一方面,由Schmid factor之計算得知,晶粒取向接近(19 7 1)與(('17' ) ̅ 6 1)時較容易啟動(1 0 0)[0 1 0]滑移系統並表現出較佳的機械性質。本研究亦量測出許多極具價值之機械性質,諸如:從微米柱壓縮測試所得之楊氏係數、降伏強度、破壞強度、破壞時之應變與降伏時之應變,以及由奈米壓痕測試所得之楊氏係數與硬度,而這些數據對於了解三維積體電路中微銲點之機械可靠度極具貢獻。另外,針對本實驗所使用之兩種量測方式的比較、優缺點及使用定位也有詳細的探討。 | zh_TW |
dc.description.abstract | The micromechanical behaviors of single crystalline intermetallic compound Ni3Sn4 with different crystallographic orientations are investigated by using micropillar compression and nanoindentation. Knowledge of the mechanical behaviors of Ni3Sn4 is important because of its application in micro joints for chip-stacking applications. During high temperature aging, annealing twins easily form in Ni3Sn4 and the twin elements are identified. The stress-strain curves from micropillar compression show that Ni3Sn4 exhibits a brittle fracture behavior. However, pillars with certain orientations do not undergo catastrophic fracture, but are able to deform plastically. Transmission electron microscopy analysis shows that dislocations with Burgers vector [0 1 0] are involved in the plastic deformation and the slip system of Ni3Sn4 is (1 0 0)[0 1 0]. The reasons why Ni3Sn4 slips on (1 0 0) plane along [0 1 0] direction is discussed in terms of its crystal structure and bonding strength. In addition, grain orientations close to (19 7 1) and (('17' ) ̅ 6 1) are more likely to activate the slip system (1 0 0)[0 1 0] and exhibit better mechanical properties since they have greater Schmid factors. Young’s modulus, yield strength, fracture strength, strain at fracture, and strain at yield along several orientations are reported. Advantages of each of these two methods and comparisons between these two methods are discussed. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T12:41:48Z (GMT). No. of bitstreams: 1 ntu-105-R03527020-1.pdf: 5447250 bytes, checksum: dc6c2275d81de45d4ad1b371aaa9cf8b (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES xi Chapter 1 Introduction 1 1.1 3D IC integration technology 1 1.2 Some issues in 3D IC micro joints 4 Chapter 2 Research Objective 9 Chapter 3 Literature Review 11 3.1 Nanoindentation 11 3.2 Micropillar compression 14 3.2.1 The introduction to micropillar compression 14 3.2.2 Two cases using micropillar compression for the study of IMC 18 Chapter 4 Experimental Procedures 23 4.1 Sample preparation 23 4.2 EBSD analysis 25 4.3 Micropillar fabrication 27 4.4 Micropillar compression 29 4.5 TEM analysis 32 4.6 Nanoindentation 34 Chapter 5 Results and Discussion 35 5.1 Intermetallic compound formation 35 5.2 Brittle characteristic of Ni3Sn4 39 5.3 Surprising plastic behavior of Ni3Sn4 IMC 41 5.3.1 Plastic deformation of Ni3Sn4 41 5.3.2 Dislocations characterization 44 5.3.3 The slip system of Ni3Sn4 48 5.3.4 Selection of slip system 51 5.3.5 Preferred grain orientations for plastic deformation of Ni3Sn4 54 5.4 Mechanical properties of Ni3Sn4 56 5.4.1 Data obtained from micropillar compression 56 5.4.2 Data from nanoindentation 61 5.4.3 Comparison between micropillar compression and nanoindentation 64 Chapter 6 Conclusion 67 REFERENCES 69 | |
dc.language.iso | en | |
dc.title | 三維積體電路微銲點中Ni3Sn4之機械行為 | zh_TW |
dc.title | Mechanical Behaviors of Ni3Sn4 in 3D IC Micro Joints | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳子嘉,陳志銘,顏怡文,何政恩 | |
dc.subject.keyword | 微米柱壓縮測試,Ni3Sn4介金屬,塑性形變,滑移系統,奈米壓痕測試, | zh_TW |
dc.subject.keyword | Micropillar compression,Intermetallic compound,Plastic deformation,Slip system,Nanoindentation, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201601443 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 5.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。