請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50459完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉超雄 | |
| dc.contributor.author | Hsiang-Yu Nieh | en |
| dc.contributor.author | 聶祥宇 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:41:38Z | - |
| dc.date.available | 2021-08-02 | |
| dc.date.copyright | 2016-08-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-26 | |
| dc.identifier.citation | [1] R. Stoneley, “The propagation of surface elastic waves in a cubic crystal,Proceedings of the Royal Society of London”, United Kingdom A232 (1955)447–458.
[2] H.Lamb, “On the propagation tremors over the surface the surface of an elastic solid.” Philos. Trans. R. Soc. London, Ser. A, A203, 1–42. 1904 [3] 廖文義. '含缺陷半無限域承受彈性波之反應.' 國立台灣大學土木工程研究所博士論文.(1997) [4] 駱弘杰. '含剛性圓形夾域之平板受簡諧力之反應.', 國立臺灣大學土木工程研究所學位論文.(2003) [5] 王培于. '二維垂直橫向等向性彈性半平面頻率域 Lamb 問題之解題方法研究.' 臺灣大學應用力學研究所學位論文, (2014): 1-128. [6] 曾宏量, “二維垂直橫觀等向性彈性圓柱山谷承受時間諧和震波之散射研究”, 臺灣大學工學院應用力學研究所碩士論文.(2015) [7] Buchwald, VT and Alan Davis, 'Surface Waves in Elastic Media with Cubic Symmetry.', The Quarterly Journal of Mechanics and Applied Mathematics 16, no. 3 (1963): 283-294. [8] J.G.Berryman, 1979. Long-wave elastic anisotropy in transversely isotropic media. Geophysics 44, 896–917. [9] P.C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields (Pergamon,Oxford,1966). [10] F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark (Eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, New York, NY, 2010. [11] K.A. Anagnostopoulos, A. Charalambopoulos, C.V. Massalas. On the investigation of elasticity equation for orthotropic materials and the solution of the associated scattering problem. Int. J. of Solids and Structures, 42 (2005), pp.6376–6408. [12] J.M.Carcione, Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media. Handbook of Geophysical Exploration, vol. 38, Elsevier (3nd edition, revised and extended), 2014. [13] R.W.Scharstein , Davis ,Acoustic scattering by a rigid elliptic cylinder in a slightly viscous medium, J Acoust Soc Am. 2007 June;121(6):3300-10. [14] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007. [15] Chao-Chow Mow,Yih-hsing Pao, The diffraction of elastic waves and dynamic stress concentrations,Rand report R-482-PR April 1971 [16] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. (Dover, New York:, 1964) [17] N.W. McLachlan, Theory and application of Mathieu functions (Oxford Press, London, 1951) [18] A. ErdÈlyi, Bateman manuscript project on higher transcendental functions, (McGraw-Hill, Malabar Florida, 1981), 1st. reprint ed [19] P. M. Morse and H. Feshbach, Methods of Theorerical Physics, (Mc-Graw Hill, New York, 1953) [20] J. A. Stratton, Electromagnetic Theory. (Mc-Graw Hill, New York, 1941) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50459 | - |
| dc.description.abstract | 本論文旨在探討於無窮域垂直橫觀等向性介質中之埋置無窮長圓形柱面孔穴在承受時間諧和平面波場作用下之散射問題以及所引致之動態應力集中現象。
本論文所建議採用之散射問題求解方法為將所欲求解之未知散射位移場或勢能場進行以複數路徑積分定義之純量波函數級數展開,而每一項以積分定義之級數展開純量波函數皆滿足垂直橫觀等向性介質之位移或勢能控制方程式以及遠場幅射條件並可以表示成核函數為非零解平面波其慢度係隨相位角而變之三角函數相位角度譜之複數路徑積分形式。所有在域內每一場點上,每一純量波函數所對應之位移場或應力場皆可用同樣之複數路徑積分形式表示,其差別僅在於積分中之被積函數不同而已。將三角函數相位角度譜之複數路徑積分形式轉換成水平慢度域之Fourier積分形式後,進一步可在水平慢度複數平面中,利用所發展之最速陡降路徑-駐相積分法,可精確積分求得分布在域內每一場點上用波函數表示之對應位移場或應力場之場值。接著;利用邊界離散配點法以最小平方誤差之方式求解級數展開之待定散射係數以滿足孔穴之法向曳引力為零之邊界條件。 特別地;針對垂直橫觀等向性介質中之反平面散射問題,可以說明經過座標拉伸變換之後成為一個相速度或慢度為定值之等向性介質反平面散射問題。而原先所建議採用以複數路徑積分定義之純量波函數展開級數,再經過散射係數重新組合定義並利用某一特定橢圓柱波函數之核函數為平面波之馬修函數相位角度譜複數路徑積分表示式之後,在新的座標系當中完可以證明全等價於相速度或慢度為定值之某一特定之橢圓柱波函數展開法。 最後;限於篇幅及研究時間為有限之條件下,本論文只針對足以代表垂直橫觀等向性材料特性之兩種代表性介質之反平面散射問題之散射問題進行求解。分別探討無窮長圓形柱面孔穴在承受時間諧和平面波場在不同入射角作用下,沿孔穴表面之切向箍應力分布以及動態應力集中現象。 | zh_TW |
| dc.description.abstract | The objective of this thesis is to study the scattering as well as dynamic stress concentration phenomenon of a vertically transversely isotropic circular cylindrical cavity subjected to the obliquely incidence of time harmonic plane elastic wave.
The total displacement field of either the anti-plane or in-plane scattering problem can be decomposed into two parts, namely, the incidence field as well as the scattering field part. We propose that the unknown scattering field part can be expanded into a series of n-th order wave function. Each wave function is defined by a trigonometric angular spectrum along a complex contour integral path with a kernel function which is non-trivial plane wave solution of the corresponding wave equation. The phase velocity of the plane wave kernel function varies with the phase angle. The trigonometric angular spectrum of each n-th order wave function can be further converted to infinite horizontal slowness integral which can be evaluated efficiently in complex slowness domain by employing the steepest descend-stationary phase method. In order to satisfy the boundary condition at each collocation point which allocate along the cavity surface, Least Square method is employed to solve the unknown coefficients of the expansion series of the scattering field. Once the coefficients are determined, the complete displacement field and stress field can be obtained. Thus, the dynamic stress concentration phenomenon of a vertically transversely isotropic circular cylindrical cavity subjected to the obliquely incidence of time harmonic plane elastic wave is thoroughly studied. Specially, for the anti-plane scattering problem of a circular cylindrical cavity embedded in a vertically transversely isotropic medium, In order to demonstrate the above proposed procedure is valid theoretically, through a coordinate transformation technique and recombination of the original expansion series, it can be shown that the original expansion series is identical to elliptic cylindrical wave function expansion for an isotropic medium, However, the original circular cylindrical cavity is transformed into an elliptic cylindrical cavity whose scattering problem can be solved analytically. From which the dynamic stress concentration phenomenon is thoroughly studied. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:41:38Z (GMT). No. of bitstreams: 1 ntu-105-R03543077-1.pdf: 2544609 bytes, checksum: 9b5becdccd1543b86423fbf931a8b42c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 謝誌 i
中文摘要 ii Abstract iv 目錄 vi 圖目錄 viii 表目錄 x 第1章 導論 1 1.1 研究動機 1 1.2 彈性波在非等向介質波傳問題歷史回顧 2 1.3 本文之研究方法與研究架構 4 第2章 基本原理與材料性質 6 2.1 材料基本性質 6 2.2 基本理論推導 10 2.3 波數與慢度及其無因次化 11 2.4 相位角和射線角、相速度和群速度 13 第2章附圖 16 第3章 散射場波函數相位角度譜展開 18 3.1 反平面散射場波函數相位角度譜之路徑積分形式 18 3.2 座標轉換後馬修函數角度譜路徑積分表示式 23 3.3 反平面散射場三角函數角度譜展開與橢圓波函數展開之關係 33 3.4 共平面散射問題之純量勢能函數 36 3.5 共平面散射場波函數角度譜展開 43 第4章 在原空間上直接求解散射問題 47 4.1 反平面問題平面波場中之慢度圖與波前圖以及入射平面波場 47 4.2 共平面問題中之入射平面波場 54 4.3 散射場待定係數之求解 62 第5章 在變換空間上間接求解反平面散射問題 66 5.1 反平面問題入射平面波場之橢圓柱波函數展開 66 5.2 反平面問題之邊界條件 68 5.3 散射係數之求解 71 5.4 數值結果 73 第6章 結論與未來展望 79 6.1 結論 79 6.2 未來展望 80 參考文獻 81 附錄A等向性介質中圓柱波函數之三角函數角度譜路徑積分表示式 83 附錄B等向性介質圓形孔洞散射問題之圓柱波函數展開法 87 附錄C在橢圓座標下Helmholtz方程式解 93 附錄D橢圓柱波函數之種類 97 | |
| dc.language.iso | zh-TW | |
| dc.subject | 角度譜 | zh_TW |
| dc.subject | 垂直橫觀等向性 | zh_TW |
| dc.subject | 散射問題 | zh_TW |
| dc.subject | 橢圓柱波函數 | zh_TW |
| dc.subject | 動態應力集中 | zh_TW |
| dc.subject | 垂直橫觀等向性 | zh_TW |
| dc.subject | 散射問題 | zh_TW |
| dc.subject | 角度譜 | zh_TW |
| dc.subject | 橢圓柱波函數 | zh_TW |
| dc.subject | 動態應力集中 | zh_TW |
| dc.subject | elliptic cylindrical wave function | en |
| dc.subject | vertically transversely isotropic | en |
| dc.subject | scattering problem | en |
| dc.subject | angular spectrum | en |
| dc.subject | elliptic cylindrical wave function | en |
| dc.subject | dynamic stress concentration | en |
| dc.subject | scattering problem | en |
| dc.subject | angular spectrum | en |
| dc.subject | dynamic stress concentration | en |
| dc.subject | vertically transversely isotropic | en |
| dc.title | 二維垂直橫觀等向性彈性孔洞承受時間諧和震波之動應力集中研究 | zh_TW |
| dc.title | The Dynamic Stress Concentration of a Vertical Transverse Isotropic Cylindrical Cavity Subjected to Time-Harmonic Elastic Wave | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖文義,陳東陽,鄧崇任 | |
| dc.subject.keyword | 垂直橫觀等向性,散射問題,角度譜,橢圓柱波函數,動態應力集中, | zh_TW |
| dc.subject.keyword | vertically transversely isotropic,scattering problem,angular spectrum,elliptic cylindrical wave function,dynamic stress concentration, | en |
| dc.relation.page | 101 | |
| dc.identifier.doi | 10.6342/NTU201601457 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
