Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50420
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲(Cheng-Che Hsu)
dc.contributor.authorCheng-Hsun Tsaien
dc.contributor.author蔡承勳zh_TW
dc.date.accessioned2021-06-15T12:40:01Z-
dc.date.available2023-08-14
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation1. Adamovich, I., et al., The 2017 Plasma Roadmap: Low temperature plasma science and technology. Journal of Physics D: Applied Physics, 2017. 50(32).
2. Braithwaite, N.S.J., Introduction to gas discharges. Plasma Sources Science and Technology, 2000. 9(4): p. 517-527.
3. Pappas, D., Status and potential of atmospheric plasma processing of materials. Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, 2011. 29(2).
4. Bo, Z., et al., Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale, 2013. 5(12): p. 5180-204.
5. Conrad, J.R., et al., Plasma source ion‐implantation technique for surface modification of materials. Journal of Applied Physics, 1987. 62(11): p. 4591-4596.
6. Coburn, J.W. and H.F. Winters, Ion‐ and electron‐assisted gas‐surface chemistry—An important effect in plasma etching. Journal of Applied Physics, 1979. 50(5): p. 3189-3196.
7. Tachibana, K., Current status of microplasma research. IEEJ Transactions on Electrical and Electronic Engineering, 2006. 1(2): p. 145-155.
8. Schoenbach, K.H. and K. Becker, 20 years of microplasma research: a status report. The European Physical Journal D, 2016. 70(2).
9. Becker, K.H., K.H. Schoenbach, and J.G. Eden, Microplasmas and applications. Journal of Physics D: Applied Physics, 2006. 39(3): p. R55-R70.
10. Mariotti, D. and R.M. Sankaran, Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 2010. 43(32).
11. Samukawa, S., et al., The 2012 Plasma Roadmap. Journal of Physics D: Applied Physics, 2012. 45(25).
12. Bruggeman, P.J., F. Iza, and R. Brandenburg, Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Science and Technology, 2017. 26(12).
13. Zhang, Z., et al., Bactericidal Effects of Plasma Induced Reactive Species in Dielectric Barrier Gas–Liquid Discharge. Plasma Chemistry and Plasma Processing, 2017. 37(2): p. 415-431.
14. Kogelschatz, U., Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing, 2003. 23(1): p. 1-46.
15. Wang, Z.B., et al., Effect of a floating electrode on an atmospheric-pressure non-thermal arc discharge. Journal of Applied Physics, 2011. 110(3): p. 5.
16. Matsumoto, S., et al., Discharge Formation of DBD With Floating Electrode Array at Atmospheric Pressure in Mixed Gas of Helium and Nitrogen. IEEE Transactions on Plasma Science, 2011. 39(11): p. 2148-2149.
17. Lee, D.-S., et al., Enhancement of Optical Emission by Floating Electrodes in a Planar Microdischarge Cell. Japanese Journal of Applied Physics, 2009. 48(5): p. 056003.
18. Nie, Q.-Y., et al., A simple cold Ar plasma jet generated with a floating electrode at atmospheric pressure. Applied Physics Letters, 2008. 93(1): p. 011503.
19. Luo, D.B., et al., A novel DC microplasma sensor constructed in a cavity PDMS chamber with needle electrodes for fast detection of methanol-containing spirit. Sci Rep, 2014. 4: p. 7451.
20. Staack, D., et al., DC normal glow discharges in atmospheric pressure atomic and molecular gases. Plasma Sources Science and Technology, 2008. 17(2).
21. Staack, D., et al., Characterization of a dc atmospheric pressure normal glow discharge. Plasma Sources Science and Technology, 2005. 14(4): p. 700-711.
22. Vander Wal, R.L., C.K. Gaddam, and M.J. Kulis, An investigation of micro-hollow cathode glow discharge generated optical emission spectroscopy for hydrocarbon detection and differentiation. Appl Spectrosc, 2014. 68(6): p. 649-56.
23. Meyer, C., et al., Development of a novel dielectric barrier microhollow cathode discharge for gaseous atomic emission spectroscopy. Journal of Analytical Atomic Spectrometry, 2012. 27(4): p. 677-681.
24. Schoenbach, K.H., et al., High-pressure hollow cathode discharges. Plasma Sources Science Technology, 1997. 6(4): p. 468-477.
25. Jiang, N., A. Ji, and Z. Cao, Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism. Journal of Applied Physics, 2009. 106(1).
26. Sands, B.L., B.N. Ganguly, and K. Tachibana, A streamer-like atmospheric pressure plasma jet. Applied Physics Letters, 2008. 92(15).
27. Wang, C.Y. and C.C. Hsu, Characterization of plasma in aqueous solution using bipolar pulsed power: Tailoring plasma and optical emission with implication for detecting lead. Plasma Processes and Polymers, 2019. 17(2).
28. Brandt, S., et al., Dielectric barrier discharges applied for optical spectrometry. Spectrochimica Acta Part B-Atomic Spectroscopy, 2016. 123: p. 6-32.
29. Bruggeman, P.J., et al., Plasma–liquid interactions: a review and roadmap. Plasma Sources Science and Technology, 2016. 25(5).
30. Han, B., et al., Dielectric barrier discharge carbon atomic emission spectrometer: universal GC detector for volatile carbon-containing compounds. Anal Chem, 2014. 86(1): p. 936-42.
31. Kitano, A., et al., Highly sensitive elemental analysis for Cd and Pb by liquid electrode plasma atomic emission spectrometry with quartz glass chip and sample flow. Anal Chem, 2011. 83(24): p. 9424-30.
32. Fanelli, F. and F. Fracassi, Atmospheric pressure non-equilibrium plasma jet technology: general features, specificities and applications in surface processing of materials. Surface and Coatings Technology, 2017. 322: p. 174-201.
33. Szili, E.J., et al., Controlling the Spatial Distribution of Polymer Surface Treatment Using Atmospheric-Pressure Microplasma Jets. Plasma Processes and Polymers, 2011. 8(1): p. 38-50.
34. Ito, M., et al., Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies. Plasma Processes and Polymers, 2018. 15(2).
35. Keidar, M., Plasma for cancer treatment. Plasma Sources Science and Technology, 2015. 24(3).
36. Isbary, G., et al., Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol, 2012. 167(2): p. 404-10.
37. Chiang, W.-H., C. Richmonds, and R.M. Sankaran, Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Science and Technology, 2010. 19(3).
38. Joshi, R.P. and S.M. Thagard, Streamer-Like Electrical Discharges in Water: Part II. Environmental Applications. Plasma Chemistry and Plasma Processing, 2013. 33(1): p. 17-49.
39. Machala, Z., et al., Removal of cyclohexanone in transition electric discharges at atmospheric pressure. Journal of Physics D: Applied Physics, 2000. 33(24): p. 3198-3213.
40. Liu, X., et al., A survey on gas sensing technology. Sensors (Basel), 2012. 12(7): p. 9635-65.
41. Huang, F.H., S.Y. Lin, and C.C. Hsu, A low-cost microplasma generation unit allowing for the on-site processing of ZnO-based gas sensors. Analyst, 2019. 144(22): p. 6653-6659.
42. Kim, H.-J. and J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sensors and Actuators B: Chemical, 2014. 192: p. 607-627.
43. Kong, X. and Y. Li, High sensitivity of CuO modified SnO2 nanoribbons to H2S at room temperature. Sensors and Actuators B: Chemical, 2005. 105(2): p. 449-453.
44. Dolai, S., et al., Colorimetric Polydiacetylene-Aerogel Detector for Volatile Organic Compounds (VOCs). ACS Appl Mater Interfaces, 2017. 9(3): p. 2891-2898.
45. Janzen, M.C., et al., Colorimetric sensor arrays for volatile organic compounds. Anal Chem, 2006. 78(11): p. 3591-600.
46. Suslick, K.S., N.A. Rakow, and A. Sen, Colorimetric sensor arrays for molecular recognition. Tetrahedron, 2004. 60(49): p. 11133-11138.
47. Sekhar, P.K., et al., Electrochemical Gas Sensor Integrated with Vanadium Monoxide Nanowires for Monitoring Low Concentrations of Ammonia Emission. Journal of The Electrochemical Society, 2020. 167(2).
48. Sekhar, P.K. and J.S. Kysar, An Electrochemical Ammonia Sensor on Paper Substrate. Journal of The Electrochemical Society, 2017. 164(4): p. B113-B117.
49. Eijkel, J.C.T., H. Stoeri, and A. Manz, An atmospheric pressure dc glow discharge on a microchip and its application as a molecular emission detector. Journal of Analytical Atomic Spectrometry, 2000. 15(3): p. 297-300.
50. Li, W., et al., Dielectric barrier discharge molecular emission spectrometer as multichannel GC detector for halohydrocarbons. Anal Chem, 2011. 83(13): p. 5050-5.
51. Zheng, K.Y., et al., Atmospheric-Pressure Dielectric Barrier Discharge as an Elemental Ion Source for Gas Chromatographic Analysis of Organochlorines. Analytical Chemistry, 2018. 90(3): p. 2148-2154.
52. Yuan, X., et al., Performance evaluation of a newly designed DC microplasma for direct organic compound detection through molecular emission spectrometry. Journal of Analytical Atomic Spectrometry, 2012. 27(12).
53. Bessoth, F.G., et al., Towards an on-chip gas chromatograph: the development of a gas injector and a dc plasma emission detector. Journal of Analytical Atomic Spectrometry, 2002. 17(8): p. 794-799.
54. Zhu, H., et al., Low-Power Miniaturized Helium Dielectric Barrier Discharge Photoionization Detectors for Highly Sensitive Vapor Detection. Anal Chem, 2016. 88(17): p. 8780-6.
55. Zhang, D.-J., et al., Dielectric barrier discharge-optical emission spectrometry for the simultaneous determination of halogens. Journal of Analytical Atomic Spectrometry, 2016. 31(2): p. 398-405.
56. Yang, T., et al., Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath. Talanta, 2016. 146: p. 603-8.
57. Mitra, B. and Y.B. Gianchandani, The Detection of Chemical Vapors in Air Using Optical Emission Spectroscopy of Pulsed Microdischarges From Two- and Three- Electrode Microstructures. IEEE Sensors Journal, 2008. 8(8): p. 1445-1454.
58. Tian, Y., et al., Corona discharge radical emission spectroscopy: a multi-channel detector with nose-type function for discrimination analysis. Analyst, 2013. 138(8): p. 2249-53.
59. Luo, D., et al., Needle electrode-based microplasma formed in a cavity chamber for optical emission spectrometric detection of volatile organic compounds through a filter paper sampling. Microchemical Journal, 2017. 130: p. 33-39.
60. Wu, Z., J. Jiang, and N. Li, Cold excitation and determination of hydrogen sulfide by dielectric barrier discharge molecular emission spectrometry. Talanta, 2015. 144: p. 734-9.
61. Meng, F. and Y. Duan, Nitrogen microplasma generated in chip-based ingroove glow discharge device for detection of organic fragments by optical emission spectrometry. Anal Chem, 2015. 87(3): p. 1882-8.
62. Meng, F., X. Li, and Y. Duan, Chip-based ingroove microplasma with orthogonal signal collection: new approach for carbon-containing species detection through open air reaction for performance enhancement. Sci Rep, 2014. 4: p. 4803.
63. Han, B., et al., Miniaturized dielectric barrier discharge carbon atomic emission spectrometry with online microwave-assisted oxidation for determination of total organic carbon. Anal Chem, 2014. 86(13): p. 6214-9.
64. Wu, Z., et al., Dielectric barrier discharge non-thermal micro-plasma for the excitation and emission spectrometric detection of ammonia. Analyst, 2011. 136(12): p. 2552-7.
65. Domingos, P., A few useful things to know about machine learning. Communications of the ACM, 2012. 55(10): p. 78-87.
66. L'Heureux, A., et al., Machine Learning With Big Data: Challenges and Approaches. IEEE Access, 2017. 5: p. 7776-7797.
67. Uijlings, J.R.R., et al., Selective Search for Object Recognition. International Journal of Computer Vision, 2013. 104(2): p. 154-171.
68. Nassif, A.B., et al., Speech Recognition Using Deep Neural Networks: A Systematic Review. IEEE Access, 2019. 7: p. 19143-19165.
69. Meng, C., et al., AOPs-SVM: A Sequence-Based Classifier of Antioxidant Proteins Using a Support Vector Machine. Front Bioeng Biotechnol, 2019. 7: p. 224.
70. Lu, X., X. Zheng, and Y. Yuan, Remote Sensing Scene Classification by Unsupervised Representation Learning. IEEE Transactions on Geoscience and Remote Sensing, 2017. 55(9): p. 5148-5157.
71. Lever, J., M. Krzywinski, and N. Altman, Principal component analysis. Nature Methods, 2017. 14(7): p. 641-642.
72. van der Maaten, L.H., Geoffrey, Visualizing Data using t-SNE.
73. Cai, T. and W. Liu, A Direct Estimation Approach to Sparse Linear Discriminant Analysis. Journal of the American Statistical Association, 2011. 106(496): p. 1566-1577.
74. Altman, N.S., An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression. The American Statistician, 1992. 46(3).
75. Chang, C.C. and C.J. Lin, LIBSVM: A Library for Support Vector Machines. Acm Transactions on Intelligent Systems and Technology, 2011. 2(3): p. 27.
76. Hinton, G.E., S. Osindero, and Y.W. Teh, A fast learning algorithm for deep belief nets. Neural Comput, 2006. 18(7): p. 1527-54.
77. Xu, R. and D. Wunsch, 2nd, Survey of clustering algorithms. IEEE Trans Neural Netw, 2005. 16(3): p. 645-78.
78. Creswell, A., et al., Generative Adversarial Networks: An Overview. IEEE Signal Processing Magazine, 2018. 35(1): p. 53-65.
79. Gidon, D., et al., Machine Learning for Real-Time Diagnostics of Cold Atmospheric Plasma Sources. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019. 3(5): p. 597-605.
80. Wang, C.Y. and C.C. Hsu, Development and testing of an efficient data acquisition platform for machine learning of optical emission spectroscopy of plasmas in aqueous solution. Plasma Sources Science Technology, 2019. 28(10).
81. Krizhevsky, A., I. Sutskever, and G.E. Hinton, ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017. 60(6): p. 84-90.
82. Zhang, M.-L. and Z.-H. Zhou, ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 2007. 40(7): p. 2038-2048.
83. Mood, C., Logistic Regression: Why We Cannot Do What We Think We Can Do, and What We Can Do About It. European Sociological Review, 2009. 26(1): p. 67-82.
84. Li, M.T., et al., Miniaturized point discharge-radical optical emission spectrometer: A multichannel optical detector for discriminant analysis of volatile organic sulfur compounds. Talanta, 2018. 188: p. 378-384.
85. Breiman, L., RandomForests. Machine Learning, 2001. 45(1): p. 5-32.
86. Pradhan, B., A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers Geosciences, 2013. 51: p. 350-365.
87. Cortes, C. and V. Vapnik, <Cortes-Vapnik1995_Article_Support-VectorNetworks.pdf>. Machine Learning, 1995. 20(3): p. 273-297.
88. Savorani, F., G. Tomasi, and S.B. Engelsen, icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson, 2010. 202(2): p. 190-202.
89. Tomasi, G., F. Savorani, and S.B. Engelsen, icoshift: An effective tool for the alignment of chromatographic data. J Chromatogr A, 2011. 1218(43): p. 7832-40.
90. Wong, J.W., C. Durante, and H.M. Cartwright, Application of fast Fourier transform cross-correlation for the alignment of large chromatographic and spectral datasets. Anal Chem, 2005. 77(17): p. 5655-61.
91. Mesbah, A. and D.B. Graves, Machine learning for modeling, diagnostics, and control of non-equilibrium plasmas. Journal of Physics D: Applied Physics, 2019. 52(30).
92. Cianciosa, M., et al., Machine learning for analysis of atomic spectral data. Journal of Quantitative Spectroscopy Radiative Transfer, 2020. 240.
93. Jang, H., et al., Real-Time Endpoint Detection of Small Exposed Area SiO2Films in Plasma Etching Using Plasma Impedance Monitoring with Modified Principal Component Analysis. Plasma Processes and Polymers, 2013: p. n/a-n/a.
94. Han, K., et al., Real-Time End-Point Detection Using Modified Principal Component Analysis for Small Open Area SiO2Plasma Etching. Industrial Engineering Chemistry Research, 2008. 47(11): p. 3907-3911.
95. Morawietz, T., et al., The Interplay of Structure and Dynamics in the Raman Spectrum of Liquid Water over the Full Frequency and Temperature Range. J Phys Chem Lett, 2018. 9(4): p. 851-857.
96. Taguchi, A.T., et al., Convolutional Neural Network Analysis of Two-Dimensional Hyperfine Sublevel Correlation Electron Paramagnetic Resonance Spectra. J Phys Chem Lett, 2019. 10(5): p. 1115-1119.
97. Peleato, N.M., R.L. Legge, and R.C. Andrews, Neural networks for dimensionality reduction of fluorescence spectra and prediction of drinking water disinfection by-products. Water Res, 2018. 136: p. 84-94.
98. Lussier, F., et al., Machine-Learning-Driven Surface-Enhanced Raman Scattering Optophysiology Reveals Multiplexed Metabolite Gradients Near Cells. ACS Nano, 2019. 13(2): p. 1403-1411.
99. Carter, J.A., et al., Combining elemental analysis of toenails and machine learning techniques as a non-invasive diagnostic tool for the robust classification of type-2 diabetes. Expert Systems with Applications, 2019. 115: p. 245-255.
100. Spether, D., et al., Real-time tissue differentiation based on optical emission spectroscopy for guided electrosurgical tumor resection. Biomed Opt Express, 2015. 6(4): p. 1419-28.
101. Guo, Y., T. Hastie, and R. Tibshirani, Regularized linear discriminant analysis and its application in microarrays. Biostatistics, 2007. 8(1): p. 86-100.
102. Skov, T., et al., Automated alignment of chromatographic data. Journal of Chemometrics, 2006. 20(11-12): p. 484-497.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50420-
dc.description.abstract微電漿系統的發展為實時現地的氣體偵測帶來一種新的可能性,利用電漿光譜進行氣體偵測同時具有高選擇性、響應速度快、高靈敏度等等優點,然而如何定性辨別揮發性有機物之電漿放射光譜仍然存在挑戰。
  機器學習為一實現人工智慧之技術,藉由統計理論結合最適化問題,從大量的資料中分析複雜資料之行為及規律性,最終整理規則以達分類或回歸之目的,依據訓練時資料是否有標記可將機器學習分為非監督式學習及監督式學習。
  本研究設計一種可攜式微電漿產生裝置可應用於實時現地之氣體檢測,此裝置為一介電層放電型微電漿,由5V直流電源結合自製升壓模組驅動,本裝置以市售銅箔基板做為原料,運用碳粉轉印技術及濕式蝕刻技術製備而成,具有低成本、製備容易、可客製化等等優點,我們使用此裝置結合光學偵測裝置建立一可連續式收取大量光譜資料的平台,結果顯示,此平台能夠收取及分析乙醇光譜達半定量之成果,並可於長時間下高效率連續收取高質量且穩定之光譜,而後透過機器學習技術定性辨別不同揮發性有機物之電漿放射光譜。本研究測試了三種不同的機器學習演算法包括主成分分析(Principal component analysis, PCA)、線性判別分析(Linear discriminant analysis, LDA)及支持向量機(Support vector machine, SVM),其中PCA為非監督式學習,LDA及SVM為監督式學習。
  本研究成果指出使用適當的機器學習演算法能夠有效提升光譜的分析能力。PCA結果顯示,PCA能夠使訓練資料分群,但不適用於測試資料,其原因為PCA主要辨識出各濃度下自身之變異結果,而非不同有機物造成之光譜差異。LDA結果顯示,LDA訓練出之模型能夠100%正確分辨同一次實驗同一張MGD的測試資料,但因其演算法之限制使其容易產生過適情形,而無法通用於不同天不同張MGD的測試資料。SVM的分析結果顯示,SVM能夠有效提升我們對於光譜的分析能力,發現光譜偏移的異常情形,而在適當選取訓練資料或有正確的資料前處理的情形下,能夠100%正確分辨不同有機物之電漿放射光譜。
zh_TW
dc.description.abstractThe development of microplasma enables real-time monitoring of the gaseous species using plasma emission spectroscopy. Quantification and identification of volatile organic compounds (VOCs) using optical emission of plasmas remain challenging.
  Machine learning (ML) is a technology to realize artificial intelligence. It using statistic models combine with optimal problems to perform specific tasks. Supervised ML examines data sets with labels while unsupervised ML handles data sets without labels.
  In this work, we presented the design and test of a portable microplasma generation device (MGD) for gaseous composition analysis. The MGD is a dielectric-barrier-discharge-type (DBD) microplasma and is low-cost and easy-to-fabricate. It is fabricated using the toner transfer method, which allows for making MGD in a low cost and flexible manner. This MGD is driven using a high-voltage module that is powered by 5-V power supply. We develop a platform which can acquired high quality and stable plasma emission spectroscopy efficiently by this device. Experiment results indicate that this platform can acquire and analyze the spectra of ethanol to achieve semi-quantification. Machine learning (ML) algorithms are used on the spectral analysis for discrimination of VOCs. Algorithms examined include principal component analysis (PCA), linear discriminant analysis (LDA), and support vector machine (SVM). PCA is an unsupervised ML algorithm while LDA and SVM are supervised ones.
Preliminary studies show that machine learning with proper algorithm has great potential for spectroscopy analysis. It is found that PCA is unable to discriminate VOCs tested most likely due to the rather large variance of emission spectra. LDA are able to classify methanol-containing and ethanol-containing ambient even with different concentrations only when the spectra are acquired with a single MGD within the same day. LDA, however, is not able to properly classify different VOCs when spectra are acquired using multiple MGDs or within multiple days, due to the limitation of this algorithm. SVM is shown that is able to enhance the ability to analyze spectra. Furthermore, it can classify different VOCs ambient even when spectra are acquired using multiple MGDs or within multiple days while used proper training data.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:40:01Z (GMT). No. of bitstreams: 1
U0001-1108202013232600.pdf: 6586720 bytes, checksum: 850d280f3aa743f582ae1142c7882e87 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 xii
第 1 章 緒論 1
1.1 前言 1
1.2 研究動機與目標 2
1.3 論文總覽 2
第 2 章 文獻回顧 3
2.1 電漿簡介 3
2.1.1 電漿產生機制與反應2 3
2.1.2 崩潰電壓與帕邢定律 5
2.1.3 低壓與常壓電漿系統 6
2.2 常壓微電漿系統 7
2.2.1 微電漿系統簡介 7
2.2.2 常壓微電漿系統之種類 9
2.2.3 常壓微電漿系統之應用與發展 13
2.3 氣體檢測及分析系統 14
2.3.1 常見氣體感測及分析方法40 14
2.3.2 電漿放射光譜分析系統之架構 17
2.3.3 電漿放射光譜分析系統之發展 19
2.4 機器學習應用於電漿光譜分析 21
2.4.1 機器學習簡介65, 66 21
2.4.2 主成分分析 24
2.4.3 線性判別分析 28
2.4.4 支持向量機 30
2.4.5 區間相關優化位移(interval correlation optimized shifting, icoshift) 33
2.4.6 機器學習於光譜分析之應用 35
第 3 章 實驗設備與架構 39
3.1 可撓式微電漿產生裝置 39
3.1.1 可撓式微電漿產生裝置之製備 39
3.1.2 微電漿產生裝置電極之設計-浮動電極 41
3.1.3 微電漿產生裝置結合光學檢測裝置之實驗設備 42
3.2 機器學習分析電漿放射光譜 44
3.2.1 電漿光譜資料庫之架構 44
3.2.2 主成分分析 (Principal Component Analysis) 46
3.2.3 線性判別分析 (Linear Discriminant Analysis) 47
3.2.4 支持向量機 (Support Vector Machine) 48
第 4 章 實驗結果與討論 49
4.1 微電漿產生裝置結合光學檢測裝置之特徵分析 49
4.1.1 電漿放射光譜分析 49
4.1.2 揮發性有機物濃度與放光強度分析 51
4.1.3 長時間偵測之系統穩定性分析 54
4.2 機器學習應用於電漿放射光譜之光學診斷 56
4.2.1 揮發性有機物之電漿放射光譜定性 56
4.2.2 利用主成分分析進行特徵擷取 58
4.2.3 測試線性判別分析判別有機氣體種類 60
4.2.4 測試支持向量機判別揮發性有機物種類 63
4.3 應用支持向量機判別揮發性有機物種類 65
4.3.1 測試更改懲罰權重C值 65
4.3.2 分析光譜於高維空間之分布 66
4.3.3 測試光譜偏移對機器學習判別之影響 68
4.3.4 測試同時訓練多個實驗數據集之支持向量機模型 73
4.3.5 利用支持向量機進行最終測試 (Confusion Matrix) 75
第 5 章 結論與未來展望 77
第 6 章 參考文獻 79
第 7 章 附錄 87
A. PCA程式碼 87
B. LDA程式碼 88
C. SVM程式碼 91
D. 全數據集隨機抽樣訓練選取之支持向量來源 93
dc.language.isozh-TW
dc.subject微電漿zh_TW
dc.subject支持向量機zh_TW
dc.subject線性判別分析zh_TW
dc.subject主成分分析zh_TW
dc.subject機器學習zh_TW
dc.subject放射光譜zh_TW
dc.subject揮發性有機物zh_TW
dc.subject微電漿zh_TW
dc.subject支持向量機zh_TW
dc.subject線性判別分析zh_TW
dc.subject主成分分析zh_TW
dc.subject機器學習zh_TW
dc.subject放射光譜zh_TW
dc.subject揮發性有機物zh_TW
dc.subjectSVMen
dc.subjectmicroplasmaen
dc.subjectvolatile organic compounds(VOCs)en
dc.subjectemission spectraen
dc.subjectmachine learningen
dc.subjectPCAen
dc.subjectLDAen
dc.subjectSVMen
dc.subjectmicroplasmaen
dc.subjectvolatile organic compounds(VOCs)en
dc.subjectemission spectraen
dc.subjectmachine learningen
dc.subjectPCAen
dc.subjectLDAen
dc.title利用機器學習解析有機物電漿放射光譜之應用zh_TW
dc.titleApplication of Machine Learning for Discrimination of Volatile Organic Compounds Using Plasma Emission Spectroscopyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭雲謙(Yun-Chien Cheng),盧彥文(Yen-Wen Lu),李奕霈(Yi-Pei Li)
dc.subject.keyword微電漿,揮發性有機物,放射光譜,機器學習,主成分分析,線性判別分析,支持向量機,zh_TW
dc.subject.keywordmicroplasma,volatile organic compounds(VOCs),emission spectra,machine learning,PCA,LDA,SVM,en
dc.relation.page96
dc.identifier.doi10.6342/NTU202002929
dc.rights.note有償授權
dc.date.accepted2020-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-1108202013232600.pdf
  未授權公開取用
6.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved